Please check the examination details belo	w before ente	ering your candidate information
Candidate surname		Other names
Centre Number Candidate Nu Pearson Edexcel Level		
Monday 10 June 202		
Morning (Time: 1 hour 45 minutes)	Paper reference	9CH0/01
Chemistry Advanced PAPER 1: Advanced Inorg	anic an	d Physical Chemistry
You must have: Scientific calculator, Data Booklet, rule	r	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- For the question marked with an asterisk (*), marks will be awarded for your ability to structure your answer logically, showing the points that you make are related or follow on from each other where appropriate.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over

Answer ALL questions.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

- 1 This question is about atomic structure.
 - (a) Complete the table.

(3)

Species	Number of protons	Number of neutrons	Number of electrons
³² S			
³³ S			
³⁴ S ²⁻			

- (b) A sample of sulfur was found to contain only four isotopes.
 - (i) Complete the table to show the percentage abundance of ³⁴S.

(1)

Isotope	³² S	³³ S	³⁴ S	³⁶ S
Percentage abundance	95.02	0.75		0.02

(ii) Calculate the relative atomic mass (A_r) of the sulfur in this sample using the data in the table. Give your answer to **two** decimal places.

(2)

(Total for Question 1 = 6 marks)

- 2 This question is about the formation of ions.
 - (a) Explain the trend in the values of the first electron affinities of the elements shown.

(4)

Element	First electron affinity/kJ mol ⁻¹
chlorine	-349
bromine	-325
iodine	-295

(b)	Which of these isoelectronic ions has the smallest ionic radius?

(1)

- \triangle A S²⁻
- B Cl⁻
- C K⁺
- **D** Ca²⁺

(c) Some series of successive ionisation energies in kJ mol⁻¹ are shown. The letters do not refer to the symbols of the elements.

Element	Successive ionisation energies/kJ mol ⁻¹				
А	578	1817	2745	11578	14831
В	653	1592	2987	4740	6686
С	738	1451	7733	10541	13 629
D	1086	2353	4621	6223	37832

(i)	Which	element i	in the	table	could	be in	Groun	4?
(')	VVIIICII	CICITICITE		tubic	coara		Oloup	,

(1)

- \bowtie A
- ⊠ B
- **⊠** C
- (ii) Which element in the table could be described as an s-block element?

(1)

- \boxtimes A
- \square B
- **⊠** C

(Total for Question 2 = 7 marks)

3	This q	uestion is about compounds and their chemical analysis.	
		containers of soluble white solids have lost their labels but are known to be m bromide, calcium iodide and potassium sulfate.	
	(a) (i)	Describe how to carry out a flame test on these samples.	(2)
			(3)
	(ii)	Give the expected observation for each of the flame tests.	
			(2)
		calcium bromide	
		calcium iodide	
		potassium sulfate	

(b) Separate aqueous solutions of calcium bromide and of calcium iodide reacted with acidified silver nitrate to produce a precipitate.

Concentrated aqueous ammonia was added to each precipitate.

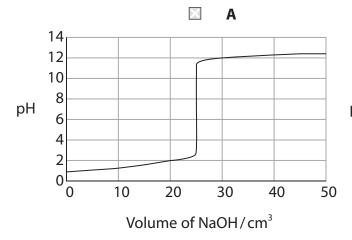
Complete the table.

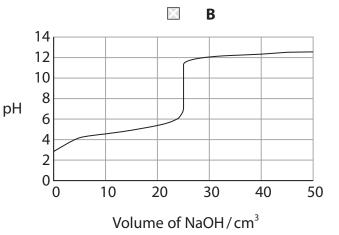
(2)

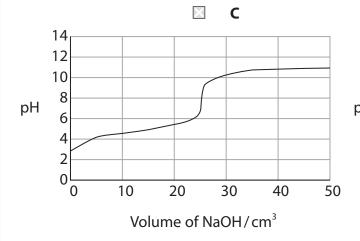
Solutio	n	Formula of precipitate with silver nitrate	Colour of precipitate with silver nitrate	Observation with concentrated aqueous ammonia	
calcium brom	iide(aq)				
calcium iodi	de(aq)				
(c) Describe	(c) Describe a chemical test for the sulfate ion giving the positive result.				
		tassium sulfate (K₂SO₄) wo entration 0.0450 mol dm ^{-3.}	ould be needed to prepare ?	250 cm³ of a	
The mol	lar mass o	of K_2SO_4 is 174.3 g mol ⁻¹ .		(1)	
\boxtimes I	A 1.96 g				
	3 7.84 g				
	1 9.6 g				

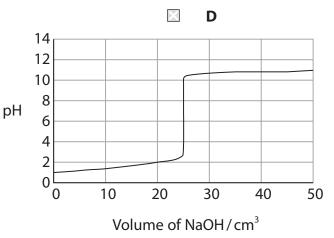
(Total for Question 3 = 10 marks)

X


D 31.4g


- 4 This question is about acids, bases and buffers.
 - (a) State what is meant by a Brønsted-Lowry acid.


(1)


(b) Which could be the titration curve when $0.100\,\mathrm{mol\,dm^{-3}}$ NaOH(aq) is added to $25.0\,\mathrm{cm^3}$ of $0.100\,\mathrm{mol\,dm^{-3}}$ CH₃COOH(aq)?

(1)

(c) Some information about acids in aqueous solution is given.

Comment on these pH values. No calculations are required.

(4)

Name of acid	Formula of acid	pH of a solution of 0.100 mol dm ⁻³ acid
hydrochloric acid	HCl	1.00
sulfuric acid	H ₂ SO ₄	0.98
propanoic acid	CH₃CH₂COOH	2.94
propanoic acid	CH₃CH₂COOH	2.94

(d) One of the systems controlling the pH of blood is the carbonic acid–hydrogencarbonate buffer system.

$$H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$$

(i) Write the expression for the acid dissociation constant, K_a , for carbonic acid. State symbols are not required.

(1)

(ii) A blood sample taken from an individual was analysed.

Calculate the pH of the blood sample.

Use your expression for K_a and the values shown.

 K_a for carbonic acid = $4.50 \times 10^{-7} \, \text{mol dm}^{-3}$

 $[HCO_3^-] = 0.0240 \, \text{mol dm}^{-3}$

 $[H_2CO_3] = 0.00200 \,\text{mol}\,\text{dm}^{-3}$

(3)

(2)

(e) The relevant equilibria that maintain the pH of blood are shown.

Equilibrium 1
$$CO_2(aq) + H_2O(l) \rightleftharpoons H_2CO_3(aq)$$

Equilibrium 2
$$H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$$

(i) When a person exercises vigorously the concentration of carbon dioxide (aq) in the blood increases.

Explain how this increase in the concentration of carbon dioxide affects the pH of the blood.

Refer to the equilibria in your answer. No calculation is required.

(ii) Explain how the carbonic acid-hydrogencarbonate buffer system in Equilibrium 2 acts to restore the pH of the blood after a person has exercised.

(Total for Question 4 = 14 marks)

5 This question is about 'Direct Ethanol Fuel Cells' which are being developed to power small electronic devices.

The overall reaction in these fuel cells is shown.

$$C_2H_5OH(l) + 3O_2(g) \rightarrow 3H_2O(l) + 2CO_2(g)$$

(a) Calculate the enthalpy change for the reaction using the mean bond enthalpy data.

(3)

Bond	Mean bond enthalpy/kJ mol ⁻¹
C—C	347
С—Н	413
с—о	358
О—Н	464
0=0	498
C=O	805

(b) (i) Complete the enthalpy cycle for the overall reaction in the Direct Ethanol Fuel Cell. Include labels.

(2)

Substance	$\Delta_{\rm f} H^{\Theta} / {\rm kJ mol^{-1}}$
C ₂ H ₅ OH(l)	-277
CO₂(g)	-394
H ₂ O(l)	-286

$$C_2H_5OH(l) + 3O_2(g)$$

$$\Delta_{\rm r} H$$

$$3H_2O(l) + 2CO_2(g)$$

(ii) Calculate a value for the enthalpy change of the Direct Ethanol Fuel Cell reaction, using your cycle.

(1)

Enthalpy change = kJ mol⁻¹

(c)	Give two reasons for the difference between your calculated values in (a) and (b).	(2)
(d)	In the Direct Ethanol Fuel Cell under acidic conditions, at one electrode the ethanol is oxidised in the presence of water to produce carbon dioxide, hydrogen ions and electrons.	
	At the other electrode, the hydrogen ions and electrons combine with oxygen to form water.	
	Write the two ionic half-equations for this process. State symbols are not required.	
	Oxidation half-equation	(2)
	Reduction half-equation	

(Total for Question 5 = 10 marks)

*6	Explain why aqueous solutions of Cu ²⁺ ions and Fe ²⁺ ions are coloured but have different colours, whereas aqueous solutions of Zn ²⁺ ions are colourless. Include any relevant electronic configurations.	
	melade any relevant electronic configurations.	(6)

7 This question is about vanadium.

The contact process is used in the manufacture of sulfuric acid. In the second stage, sulfur dioxide is converted into sulfur trioxide by passing sulfur dioxide and air over a solid V_2O_5 catalyst.

The equation for the second stage is shown.

$$SO_2(g) + \frac{1}{2}O_2(g) \implies SO_3(g)$$
 $\Delta H = -196 \text{ kJ mol}^{-1}$

(a) (i) What are the expression and the units for the equilibrium constant (K_p) for this reaction?

(1)

		Expression	Units
X	A	$\frac{p(SO_3)}{p(SO_2)p(O_2)^{\frac{1}{2}}}$	atm²
\times	В	$\frac{p(SO_2)p(O_2)^{V_2}}{p(SO_3)}$	atm ^½
\times	C	$\frac{p(SO_2)p(O_2)^{V_2}}{p(SO_3)}$	atm ^{-½}
\times	D	$\frac{p(SO_3)}{p(SO_2)p(O_2)^{\frac{1}{2}}}$	atm ^{-½}

(ii) Which variable affects the value of K_p ?

(1)

- A pressure
- B temperature
- C surface area of the catalyst
- \square **D** concentration of O₂(g)

(b) Write **two** equations that show the conversion of SO_2 and O_2 into SO_3 by using V_2O_5 as the catalyst. State symbols are not required.

(2)

(c) Which row of the table shows the correct colour of the solution and oxidation number of vanadium in the aqueous ions shown?

(1)

		Aqueous ion	Colour of solution	Oxidation number of vanadium
X	A	VO ₂ ⁺	yellow	+3
X	В	VO ²⁺	green	+4
X	C	VO ₂ ⁺	yellow	+5
X	D	VO ²⁺	blue	+5

(d) What is the value of the cell potential for the reaction of Zn and VO₂⁺? Use your Data Booklet.

$$2VO_2^+(aq) \ + \ 4H^+(aq) \ + \ Zn(s) \ \to \ 2VO^{2+}(aq) \ + \ 2H_2O(l) \ + \ Zn^{2+}(aq)$$

(1)

- **B** +0.24 V
- C −0.24V
- D -1.76V

(Total for Question 7 = 6 marks)

BLANK PAGE

- **8** This question is about ionic compounds.
 - (a) Draw dot-and-cross diagrams of the ions in magnesium hydroxide, showing the outer shell electrons only.

Use $\mathbf x$ for magnesium electrons, \bullet for oxygen electrons and Δ for each hydrogen electron.

(2)

(b) Which definition correctly describes the enthalpy change of solution, $\Delta_{sol}H$?

(1)

		Enthalpy change of solution, $\Delta_{\mathrm{sol}}H$
X	Α	The enthalpy change when 1 mol of gaseous ions dissolves in sufficient water to give an infinitely dilute solution.
X	В	The enthalpy change when 1 mol of an ionic substance dissolves in water to give an infinitely dilute solution.
X	C	The enthalpy change when 1 mol of gaseous ions dissolves in sufficient water to give a solution of concentration 1 mol dm ⁻³ .
X	D	The enthalpy change when 1 mol of an ionic substance dissolves in water to give a solution of concentration 1 mol dm ⁻³ .

(c) The table shows the information needed to calculate the standard enthalpy change of formation of magnesium fluoride.

Label	Description	Value/kJ mol ⁻¹
А	enthalpy change of formation of magnesium fluoride	
В	lattice energy of magnesium fluoride	-2957
С	enthalpy change of atomisation of magnesium	+148
D	1st ionisation energy of magnesium	+738
Е	2nd ionisation energy of magnesium	+1451
F	enthalpy change of atomisation of fluorine	+79
G	1st electron affinity of fluorine	-328

(i) Complete the Born–Haber cycle for magnesium fluoride with formulae, state symbols, electrons and correctly labelled arrows.

The cycle is not drawn to scale.

 $Mg(g) + F_2(g)$ C $Mg(s) + F_2(g)$ A $MgF_2(s)$

(ii) Calculate the value of $\Delta_f H^{\Theta}[MgF_2(s)]$.

(1)

(4)

(iii) The experimental and theoretical values of the lattice energy for MgF_2 and MgI_2 are given in the table.

Experimental lattice energy / kJ mol⁻¹

Explain the differences in these values.

Compound

(4)

Theoretical lattice energy

 $/kJ \, \text{mol}^{-1}$

(Total for Question 8 = 12 marks)

MgF ₂	-2957	-2913	
MgI_2	-2327	-1944	

- **9** Sodium hydrogencarbonate is used as a raising agent in baking as carbon dioxide gas is released when it undergoes thermal decomposition.
 - (a) Show that this reaction is **not** feasible at 298 K by calculating ΔG .

$$2NaHCO_3(s) \rightarrow Na_2CO_3(s) + CO_2(g) + H_2O(l) \Delta_r H = +91.6 \text{ kJ mol}^{-1}$$
(3)

Compound	NaHCO₃(s)	Na ₂ CO ₃ (s)	CO ₂ (g)	H ₂ O(l)
Standard molar entropy /JK ⁻¹ mol ⁻¹	101.7	135.0	213.6	69.9

(b) Calculate the minimum temperature, in degrees Celsius (°C), at which an oven should be set for this reaction to be thermodynamically feasible.

(2)

Minimum temperature =

(Total for Question 9 = 5 marks)

BLANK PAGE

10	Vitamin C has the molecular formula $C_6H_8O_6$.
	The label on a bottle of vitamin C tablets stated that a 2.50 g tablet contained 6% of vitamin C by mass. The tablet was analysed to check the accuracy of the label.
	The procedure involved a series of steps.

(a) Step 1 Dissolving the tablet.

A 2.50 g vitamin C tablet was crushed and dissolved to make an aqueous solution of volume 250.0 cm³.

Describe how to make this solution from the crushed tablet.

(3)

(b) Step 2 Producing a known amount of iodine.

lodine was produced by reacting 25.0 cm³ of 0.0100 mol dm⁻³ potassium iodate with excess potassium iodide and hydrochloric acid in a conical flask.

(i) Complete the ionic equation for the formation of the iodine from 1 mol of ${\rm IO}_3^-$ ions.

(1)

$$IO_3^- + \dots I^- + \dots H^+ \rightarrow 3I_2 + \dots$$

(ii) Show, by calculation, that 7.50×10^{-4} moles of iodine were produced in the flask.

(2)

(c) Step 3 Titrating with sodium thiosulfate solution.

10.0 cm³ of the vitamin C tablet solution from Step 1 was added to the conical flask from Step 2 to react with the iodine produced, as shown in the equation.

$$C_6H_8O_6(aq) + I_2(aq) \rightarrow C_6H_6O_6(aq) + 2HI(aq)$$

The unreacted iodine in the conical flask was titrated with a solution of $0.100\,\text{mol}\,\text{dm}^{-3}$ sodium thiosulfate, $Na_2S_2O_3(aq)$.

The mean titre was 14.40 cm³.

$$2S_2O_3^{2-}(aq) + I_2(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$$

(i) State the indicator used in this titration, giving the colour change that would be observed at the end-point.

/	9	1
(J)
N	_	/

(ii) Deduce, by calculation, whether the label on the bottle of vitamin C tablets is correct.

(6)

(Total for Question 10 = 14 marks)

TOTAL FOR PAPER = 90 MARKS

The Periodic Table of Elements

0 (8)	(18)	4.0	Δ H	helium	2
7					(17)
9					5) (16)
2					(15)
4					(13) (14) (15)
ĸ					(13)
		0.1		hydrogen) Key
2		0.1	T	hydrogen	(2) Key

_										1							<u> </u>							
4.0	He	2	20.2	Ne	neon	10	39.9	Αľ	argon 18		ᄌ				Xe	xenon 5.4	1777	P. P.	radon	98		ted		
		(17)	19.0	ш	fluorine	6	35.5	บ	chlorine 17	79.9	B	bromine	35	126.9	Ι	iodine 53	[046]	V	astatine	85		een repor		
		(16)	16.0	0	oxygen	8	32.1	S	sulfur 16	79.0	Se	selenium	34	127.6		tellurium 52		<u> </u>	polonium	84		116 have b	ticated	
		(15)	14.0	z	nitrogen	7	31.0	۵	phosphorus 15	74.9	As	arsenic	33	121.8	Sb	antimony 51	0 000		bismuth			bers 112-	but not fully authenticated	
		(14)	12.0	U	carbon	9	28.1	Si	silicon F	1	ge	germanium	32	118.7		ti G	۱,	4	lead	82		atomic nun	but not fu	
		(13)	10.8	Ω	poron	5	27.0	¥	aluminium 13	69.7	Ga	gallium	31	114.8	٦	indium	7 7 7		₽			Elements with atomic numbers 112-116 have been reported		
		•							(12)	1	Zu	zinc	30	112.4	<u>გ</u>	cadmium	2006	Ī	mercury	80		Elem		
									(11)	63.5	ŋ	copper	29	107.9	Ag	silver 47	107.0			79	[272]	Rg	roentgenium	111
									(10)	58.7	Ë	nickel	28	106.4	Pd	palladium 46	105 1	<u> </u>	platinum	78	[271]	Ds	darmstadtium	110
									(6)	58.9	ပိ	cobalt	27	102.9	뫈	rhodium	107 7	<u>1. 7.</u>	iridium	77	[368]	₩	meitnerium damstadtium	109
1.0	H hydrogen	-							(8)	55.8	Fe	iron	76	101.1	Ru	ruthenium	190 2	2	osmium	9/	[277]	¥	_	108
									(2)	54.9	٧	manganese	25	[86]	ည	technetium	186.7	D	rhenium	75	[264]			
			mass	lod		nmber			(9)	52.0	Ъ	chromium	24 25	95.9	Wo	molybdenum technetium	183.8	3	tungsten	74	[592]	Sg	seaborgium	106
		Key	relative atomic mass	atomic symbol	name	atomic (proton) number			(2)	50.9		anadium	23	92.9	g	iobium 44	180 0	<u>}</u>	tantalum	73	[797]	6	dubnium	105
			relati	ato		atomic			(4)	47.9	ï	titanium	22	91.2	Zr	zirconium	178 5	<u>;</u> ‡	hafnium	72	[261]	¥	nutherfordium	104
									(3)		Sc	scandium	21	88.9	>	yttriun	128.0	<u>*</u>	lanthanum	22	[227]	Ac*	actinium	86
		(2)	0.6	Be	beryllium	4	24.3	Mg	magnesium 12	40.1	Ca			9.78	Sr	strontium 38	137 3	. K		26	[977]	Ra	radium	88
		(1)	6.9	ב	lithium	3	23.0	Na	sodium 11	39.1	¥	potassium	19	85.5	&	rubidium 27	137.0	ي آ	caesium	22	[223]	Ŧ	francium	87

^{*} Lanthanide series

140	141	144	[147]	150	152	157	159	163	165	167	169	173	175
S	ዋ	PZ	Pm	Sm	Eu	Ъ		Š	운	Ę	H	Υp	Ľ
cerinm	praseodymium	neodymium	promethium	samarinm		gadolinium		dysprosium	holmium	erbium	thulium	ytterbium	lutetium
28	59	9	61	62	63	64		99	- 67	89	69	70	71
232	[231]	238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[256]	[254]	[257]
루	Pa	-	ď	Pu	Am	£	æ	ᠸ	Es	Fm	ΡW		۲
thorium	protactinium	uranium ne		plutonium	americium	aurium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
8	91	92	93	94	92	96	67	86	66	100	101	102	103

^{*} Actinide series