Please check the examination details belo	w before ente	ering your candidate information
Candidate surname		Other names
Centre Number Candidate Nu	mber	
Pearson Edexcel Level	3 GCE	
Tuesday 18 June 202	24	
Morning (Time: 1 hour 45 minutes)	Paper reference	9CH0/02
Chemistry		***
Advanced		
		Dharaiga I Chamaiatan
PAPER 2: Advanced Organ	nic and	Physical Chemistry
		J
You must have:		Total Marks
Scientific calculator, Data Booklet, rule	r	

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- For the question marked with an asterisk (*), marks will be awarded for your ability to structure your answer logically, showing the points that you make are related or follow on from each other where appropriate.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over

Answer ALL questions.

Some questions must be answered with a cross in a box ⊠. If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

- This question is about organic compounds that contain a halogen atom or a nitrogen atom.
 - (a) Equal amounts of four bromoalkanes were added to separate test tubes containing 2 cm³ of a silver nitrate solution.

The mixtures were heated in a water bath.

Which bromoalkane would be the first to form a precip	oitate
--	--------

(1)

- X 1-bromobutane
- X 2-bromobutane
- X 1-bromo-2-methylpropane
- X **D** 2-bromo-2-methylpropane
- (b) Which pair of reactants will form an *N*-substituted amide?

(1)

- X A CH₃COCl and NH₃
- X CH₃CH₂OH and NH₃
- X C CH₃COCl and CH₃NH₂
- X **D** CH₃CH₂OH and CH₃NH₂

(c) Ammonia reacts with bromoethane as shown.

$$2NH_3 \ + \ CH_3CH_2Br \ \rightarrow \ NH_4Br \ + \ CH_3CH_2NH_2$$

(i) Explain, by referring to the reaction mechanism, the roles of ammonia in the formation of each of the products of this reaction.

(3)

(ii) What conditions are needed for this reaction?

(1)

		Method of heating	Solvent
X	Α	heat in a sealed tube	ethanol
X	В	heat under reflux	ethanol
×	C	heat in a sealed tube	water
X	D	heat under reflux	water

(d) The halogenoalkane, 1-bromobutane, can be formed by the reaction of butan-1-ol with sodium bromide and sulfuric acid.

$$CH_3CH_2CH_2CH_2OH + NaBr + H_2SO_4 \rightarrow CH_3CH_2CH_2CH_2Br + NaHSO_4 + H_2O$$

Calculate the atom economy, by mass, for the formation of 1-bromobutane. Give your answer to **one** decimal place.

$$[A_r \text{ values: H} = 1.0 \text{ C} = 12.0 \text{ O} = 16.0 \text{ Na} = 23.0 \text{ S} = 32.1 \text{ Br} = 79.9]$$
 (2)

(Total for Question 1 = 8 marks)

This question is about Grignard reagents.	
A Grignard reagent is formed by reacting bromoethane with magnesium under reflux.	
$CH_3CH_2Br + Mg \rightarrow CH_3CH_2MgBr$	
(a) The most suitable solvent for this reaction is	(4)
■ A cyclohexane	(1)
■ B ether	
C ethyl ethanoate	
☑ D hexane	
(b) State the use of Grignard reagents in organic synthesis.	(1)
(c) In their reactions, the Grignard reagent is best described as ■ A a carbocation	(1)
■ B an electrophile	
☑ C a nucleophile	
■ D a radical	
(d) Grignard reagents must be kept dry.	
Predict the organic product that forms when CH ₃ CH ₂ MgBr reacts with water. Justify your answer by considering the polarity of both CH ₃ CH ₂ MgBr and water.	(2)

(e) Which compound will form a **tertiary** alcohol when it reacts with a Grignard reagent, followed by acid hydrolysis?

(1)

- \triangle A CO_2
- B HCHO
- ☑ D CH₃COCH₃

(Total for Question 2 = 6 marks)

3	This	auestion	is	about	hydrogen	peroxide.	H_2O_2
_		9000000		40000	,	p c i o i i i i c i	

(a) Draw a dot-and-cross diagram of a molecule of hydrogen peroxide.

(1)

(b) Hydrogen peroxide decomposes to form water and oxygen.

$$2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$$

Explain, using oxidation numbers, why the decomposition of hydrogen peroxide is classified as a disproportionation reaction.

(3)

(c) The decomposition of hydrogen peroxide is catalysed by iodide ions, I⁻(aq).

The kinetics of this reaction were investigated using different concentrations of hydrogen peroxide and iodide ions.

The results are shown in the table.

Experiment	[H ₂ O ₂ (aq)] / mol dm ⁻³	[I ⁻ (aq)] / mol dm ⁻³	Rate / mol dm ⁻³ s ⁻¹
1	0.100	0.0500	8.90×10^{-7}
2	0.400	0.0500	3.56 × 10 ⁻⁶
3	0.200	0.100	3.56 × 10 ⁻⁶

(i) Deduce the order of reaction with respect to hydrogen peroxide and to iodide ions.

(2)

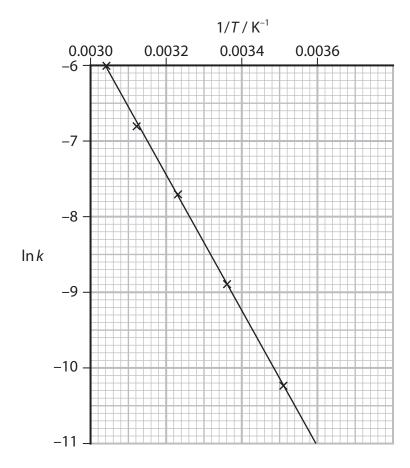
Order with respect to hydrogen peroxide

Order with respect to iodide ions

(ii) Write the rate equation for the reaction using your answer to (c)(i).

(1)

(iii) Calculate the rate constant, *k*, using data from Experiment 3. Include units in your answer.


(2)

(d)	 The breakdown of hydrogen peroxide with iodide ions as a catalyst is the basis of the demonstration 'Elephant's Toothpaste'. The presence of a detergent results in a rapid eruption of foam as the oxygen gas is released. (i) Describe the test and the positive result that confirms the gas produced is oxygen. 	(1)
	(ii) The foam produced often has a slight yellow/brown colour. Explain what causes this colour, which is not caused by the detergent	
	Explain what causes this colour, which is not caused by the detergent.	(2)

(e) The effect of temperature on the rate of the decomposition of hydrogen peroxide without a catalyst was also investigated.

A graph of ln *k* against 1/temperature (1/*T*) was plotted.

(i) Determine the gradient of the graph. Include units in your answer. You must show your working on the graph.

(3)

(ii) Calculate the activation energy, E_a , of the reaction, in kJ mol⁻¹, using your answer to (e)(i) and the Arrhenius equation shown.

$$\ln k = -\frac{E_{\rm a}}{R} \times \frac{1}{T} + \text{constant}$$

[Gas constant (R) = 8.31 J mol⁻¹ K⁻¹]

(1)

(f) Another way to write the Arrhenius equation is shown.

$$k = Ae^{-E_a/RT}$$

The constant A is often called the collision factor as it is linked to the orientation of the particles colliding in a reaction.

The decomposition of hydrogen peroxide is also catalysed by aluminium.

Calculate a value for A at 370 K, for the catalysed decomposition of hydrogen peroxide with an activation energy, E_a , of $5.02 \times 10^4 \, \mathrm{J} \, \mathrm{mol}^{-1}$ and a numerical value for the rate constant of 1.60×10^{-3} . Units are **not** required.

(2)

(Total for Question 3 = 18 marks)

*4	Discuss the role society, and chemists in particular, can play in order to contribu a more sustainable use of polymers.	te to
	Your answer should consider	
	the different ways of dealing with waste polymers	
	• how chemists can limit the problems caused by the disposal of polymers.	(4)
		(6)

- **5** This question is about cyclic compounds.
 - (a) The hydrocarbon cyclopentane is present in some fuels and is used in the manufacture of insulation for freezers.

cyclopentane

Cyclopentane can be synthesised by passing 2-methylbutane over a hot platinum catalyst.

Name the type of reaction that takes place in this synthesis.

(1)

(b) The energy density of a fuel is defined as the energy released per dm³ of the liquid fuel burned.

A sample of cyclopentane with a mass of 30.0 g releases 1.41 MJ of energy.

Calculate the energy density of cyclopentane. Include units in your answer.

[Density of cyclopentane = $0.751 \,\mathrm{g \, cm^{-3}}$]

(2)

(c) Under appropriate conditions, cyclopentane reacts with bromine to form bromocyclopentane.

(i) State the condition needed to initiate the reaction.

(1)

(ii) Complete the table showing the steps of the mechanism of this reaction. Curly arrows are not required.

(3)

Step	Equation(s)
Initiation	
Propagation	1. + Br* + HBr 2.
Termination	Br

(iii) Draw the structure of the organic product of an alternative termination step.

(1)

(d) Bromocyclopentane forms cyclopentene when heated under reflux with a concentrated solution of potassium hydroxide in ethanol.

(i) Explain why the solvent ethanol is treated with anhydrous sodium sulfate before use in this reaction.

(2)

(ii) Give the name of the reaction shown in the equation.

(1)

(iii) Predict the mechanism for the reaction by adding two curly arrows.

(1)

(Total for Question 5 = 12 marks)

6	This	quest	tion	is about nuclear magnetic resonance (NMR) spectroscopy.	
	(a) \	Which	pai	rt of the electromagnetic spectrum is used in NMR?	(1)
		×	A	infrared	(1)
		×	В	radio waves	
		×	C	ultraviolet	
		×	D	X-ray	
	(b) I	Explai	n w	hy tetramethylsilane, TMS, is used in NMR spectroscopy.	(2)
				ary amine, \mathbf{Q} , has the molecular formula $C_6H_{15}N$. esolution 1H NMR spectrum of \mathbf{Q} has three peaks.	
		(i) Sta	ate v	what is meant by the term 'secondary amine'.	(1)
		ii) De		te the structure of Q .	
	(11) DC	.auc	the structure of Q .	(1)

(d) Two cyclic alcohols have the structures shown.

cyclohexane-1,2-diol

cyclohexane-1,3-diol

Show that the ^{13}C NMR spectra of these compounds can be used to distinguish between the two alcohols, labelling the diagrams to justify your answer.

(2)

(Total for Question 6 = 7 marks)

7 This question is about polymers, an example of which is neoprene, a synthetic rubber material.

It is formed by the polymerisation of chloroprene.

(a) What is the IUPAC name of chloroprene?

(1)

- A 3-chlorobuta-1,3-diene
- **B** 2-chlorobuta-2,4-diene
- **C** 3-chlorobuta-2,4-diene
- **D** 2-chlorobuta-1,3-diene
- (b) Calculate the volume, **in cm**³, occupied by 10.0 g of chloroprene in the gaseous phase, at 80.0 °C and 205 kPa.

 Give your answer to an appropriate number of significant figures.

[Gas constant (R) = 8.31 J mol⁻¹ K⁻¹]

(5)

(c) Chloroprene is formed by first adding chlorine, Cl₂, to Compound A and then removing hydrogen chloride from the product of this reaction.

(i) Explain how chlorine, Cl₂, can act as an electrophile in Step 1 even though a chlorine molecule is symmetrical. You may find it helpful to include a diagram.

(2)

(ii) Draw the mechanism for Step 1. Include curly arrows, and any relevant lone pairs and dipoles.

(3)

(iii) Chloroprene polymerises to form neoprene as shown.

Give the name of the type of reaction that occurs when chloroprene polymerises.

(1)

(d) Flexible and water-resistant materials can be made by combining neoprene with polyester fabric.

A polyester may be made by the reaction of benzene-1,4-dicarboxylic acid with ethane-1,2-diol.

(i) Explain why ethane-1,2-diol is soluble in water.
A detailed description of the forces involved is not required.

171		-	Α.
	-	7)	٠,
		/	- 1

(ii) The molar mass of a polyester is 8400 g mol⁻¹.

Calculate the number of polymer molecules in 4.25 mg of this polyester.

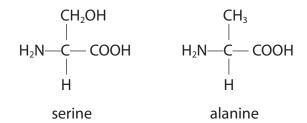
[Avogadro constant (L) = $6.02 \times 10^{23} \text{ mol}^{-1}$]

(2)

(iii) A student spilled a small amount of 0.40 mol dm⁻³ sodium hydroxide solution onto a polyester laboratory coat. A hole formed in the laboratory coat as the result of a chemical reaction.

What type of reaction occurred?

(1)

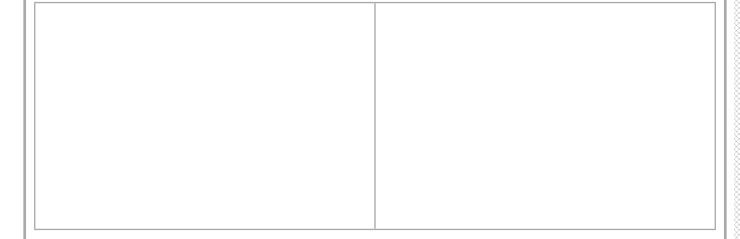

- A dehydration
- B hydrolysis
- C neutralisation
- **D** redox

(Total for Question 7 = 17 marks)

8 This question is about amino acids and related compounds.

The structures of two amino acids are shown.

- (a) Both amino acids contain a chiral carbon atom.
 - (i) State what is meant by the term 'chiral carbon atom'.


(1)

(ii) Draw diagrams of the two stereoisomers of **alanine**, showing their three-dimensional shape.

(2)

(b) Draw the **skeletal** formulae of the two dipeptides that could form when serine and alanine react.

(2)

(c) Serine exists as a zwitterion.

What is the formula of this zwitterion?

(1)

(d) Alanine can be synthesised as shown.

Compound X

Step 1
$$C_2H_5O^-Na^+$$

Compound Y

(i)	Sodium ethoxide, C ₂ H ₅ ONa, needed in Step 1, is formed by the reaction of
	sodium with ethanol.

Write the equation for this reaction. State symbols are not required.

(1)

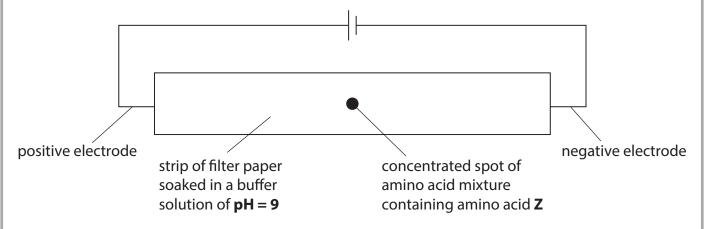
(ii) Name the **two** functional groups present in Compound **Y**.

(2)

(iii) Give the reagent needed and conditions required for Step 3.

(2)

(iv) Calculate the mass of Compound **X** required to make 15.0 g of alanine, assuming the overall yield of the synthesis is 55 %.


(3)

(2)

(e) A mixture of amino acids can be separated using a technique called paper electrophoresis. A simplified diagram is shown.

The movement of the amino acid on the paper depends on any charge on the amino acid, and this is determined by the pH of the buffer solution.

Amino acid **Z** has the structure shown.

amino acid **Z**

Explain in which direction, if any, amino acid $\bf Z$ would move when a current flows in the circuit with a buffer solution of pH = 9.

TOTAL FOR PAPER = 90 MARKS

	0 (8)	4.0	Helium	2	20.2	Ne Pe	10 10	39.9	٩r	argon 18	33.8	궃	krypton 3 6	131.3	Xe	xenon 54	222]	묎	radon 86			
	7 0	L		(17)			fluorine 9			chlorine s	79.9	P.	bromine kr 35			iodine x 53 2	[210]		astatine r		ı reported	
				(16)	16.0		oxygen flu 8			sulfur chl				127.6 12		tellurium io	[509]		polonium ast		nave beer	ted
	9			(1)	16			32.1			62							_			12-116	nenticat
	D.			(15)	14.0	z	nitrogen 7	31.0	Δ.	phosphorus 15	74.9	As	ø	121.8	Sb	antimony 51	209.0	.E	bismuth 83		Imbers 1	but not fully authenticated
	4			(14)	12.0	U	carbon 6	28.1	Si	silicon 14	72.6	Ge	germanium 32	118.7	Sn	tin 20	207.2	Ъ	lead 82		atomic nu	but not 1
	ю			(13)	10.8	В	boron 5	27.0	¥	aluminium 13	69.7	Ga	gallium 31	114.8	In	indium 49	204.4	F	thallium 81		Elements with atomic numbers 112-116 have been reported	
ents				'						(12)	65.4	Zn	zinc 30	112.4	ਨ	cadmium 48	200.6	Hg	mercury 80		Elen	
Elem										(11)	63.5	D C	copper 29	107.9	Ag	silver 47	197.0	Pα	gold 79	[272]	Rg	oentgenium 111
eriodic Table of Elements										(10)	58.7	ï	nickel 28	106.4	Pd	palladium 46	195.1	7	platinum 78	[271]	Mt Ds Rg	darmstadtium r 110
: Tabl										(6)	58.9	ပိ	cobalt 27	102.9	묎	rhodium 45	192.2	Ţ	iridium 77	[368]	Mt	meitnerium 109
riodic		1.0	H hydrogen	-						(8)	55.8	Fe	iron 26	101.1	Ru	ruthenium 44	190.2	Os	osmium 76	l		hassium 108
The Pe										(2)	54.9	۸	nanganese 25	[86]	բ	technetium 43	186.2	Re	rhenium 75	[264]	ВР	bohrium 107
ဲ					nass	To lo	mper			(9)	52.0	ъ	chromium manganese 24 25	95.9	Wo	molybdenum technetium ruthenium 42 44	183.8	>	tungsten 74	[597]	Sg	seaborgium 106
				Key	relative atomic mass	atomic symbol	name atomic (proton) number			(2)	50.9	>	vanadium 23	92.9	S S	niobium 41	180.9	Та	tantalum 73	[592]		dubnium 105
					relati	ator	atomic			4	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5	Ŧ	hafnium 72	[261]		rutherfordium 104
										(3)	45.0	Sc	scandium 21	88.9	>	yttrium 39	138.9	La*	lanthanum 57	[227]		F
	7			(2)	9.0	Be	beryllium 4	24.3	Ag	magnesium 12	40.1	Ca	calcium 20	9.78	S	strontium 38	137.3	Ва	barium l	[526]		radium 88
	-			(1)	6.9	<u></u>	lithium 3	23.0		_	39.1	¥	potassium 19	85.5	&	rubidium 37	132.9	S	caesium 55	[223]	占	francium 87

44	[147]	150	152	157	159	163	165		169	173	175
P	Pm	Sm	Eu	В	<u>P</u>	ک	운			χp	רת
praseodymium neodymium	promethium	samarium	europium	gadolinium	erbium	dysprosium	holmium			ytterbium	_
60	61	62	63	64	65	99	67			20	
238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[256]	[254]	
-	å	Pu	Am	£	ਲ	ט	ES	FB	PW		ב
protactinium uranium	neptunium	plutonium	americium	anium	berkelium	californium	einsteinium	fermium	mendelevium		lawrenciur
92	93	94	92	%	26	86	66	100	101		103
	n ine	Nd hoodymium pro 60 60 U U nranium nel 92	Nd Pm n neodymium promethium sa 60 61 238 [237] U Np uranium neptunium plu	Nd Pm Sm Eu n neodymium promethium samarium europium 60 61 62 63 238 [237] [242] [243] U Np Pu Am uranium neptunium plutonium americium 92 93 94 95	Nd Pm Sm Eu n neodymium promethium samarium europium 60 61 62 63 238 [237] [242] [243] U Np Pu Am uranium neptunium plutonium americium 92 93 94 95	Nd Pm Sm Eu Gd Tb n neodymium promethium 60 61 62 63 64 65 238 [237] [242] [243] [247] [245] U Np Pu Am Cm Bk u ranium neptunium putconium americium berketium 92 93 94 95 96 97	Nd Pm Sm Eu Gd Tb n neodymium promethium 60 61 62 63 64 65 238 [237] [242] [243] [247] [245] U Np Pu Am Cm Bk u ranium neptunium putconium americium berketium 92 93 94 95 96 97	Nd Pm Sm Eu Gd Tb Dy n neodymium promethium bromethium brom	Nd Pm Sm Eu Gd Tb Dy n neodymium promethium 60 61 62 63 64 65 66 238 [237] [242] [243] [247] [245] [251] U Np Pu Am Cm Bk Cf uranium neptunium putonium americium americium berkelium californium 92 93 94 95 96 97 98	Nd Pm Sm Eu Gd Tb Dy Ho Er Tm n neodymium pool 61 62 63 64 65 65 66 67 68 69 238 [237] [242] [247] [245] [245] [254] [255] [256] 69 U Np Pu Am Cm Brk Cf Es Fm Md uranium neptunium putronium putronium	Nd Pm Sm Eu Gd Tb Dy Ho Er Tm n neodymium promethium samarium europium gadolinium terbium dysprosium holmium erbium thulium ytt 238 63 64 65 66 67 68 69 69 238 [237] [243] [247] [245] [251] [254] [253] [256] [U Np Pu Am Cm Bk Cf Es Fm Md uranium neptunium putonium putoniu

* Lanthanide series

* Actinide series