

Examiners' Report June 2018

GCE Chemistry 9CH0 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

ResultsPlus

Giving you insight to inform next steps

ResultsPlus is Pearson's free online service giving instant and detailed analysis of your students' exam results.

- See students' scores for every exam question.
- Understand how your students' performance compares with class and national averages.
- Identify potential topics, skills and types of question where students may need to develop their learning further.

For more information on ResultsPlus, or to log in, visit <u>www.edexcel.com/resultsplus</u>. Your exams officer will be able to set up your ResultsPlus account in minutes via Edexcel Online.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>.

June 2018 Publications Code 9CH0_01_1806_ER

All the material in this publication is copyright © Pearson Education Ltd 2018

Introduction

This is the second examination in the Pearson Edexcel Level 3 Advanced GCE in Chemistry (9CH0) qualification.

The paper seemed accessible to most candidates and provided them with the opportunity to demonstrate their knowledge and understanding of the key concepts in Topics 1 to 8 and 10 to 15.

There seemed to be some confusion in a few Centres about which equations candidates are expected to know. They should be guided by the specification which determines what is in the examinations and not what is in any textbook or revision guide, which may well go beyond the published specification. The specification makes it clear in Topic 16.12 that the Arrhenius equation will be given if needed and as this is not stated for any other equation, the implication is that all other equations need to be learnt by the candidates. As this is the first time that the equation $\Delta G = -RT \ln K$ has been asked for (all the other equations in the specification were in last year's papers) then we allowed, for this year only, any equation involving these 4 letters for 2 marks out of 3, if calculated correctly using their equation.

Successful candidates:

- read the questions carefully and answered the questions as they were set
- understood and used correct scientific terminology
- could carry out unstructured calculations.

Some answers were of a lower standard. Less successful candidates:

- did not read the questions carefully and gave answers that were related to the topic being tested but did not answer the question
- wasted time repeating the question and/or repeating the same points, sometimes several times
- did not use correct scientific terminology
- were not familiar with all the AS topics.

Question 1 (a)

The majority of candidates could identify at least one ion from ammonium and bromide from the tests and their results, although some did not identify the cation as they did not recognise the test for ammonia gas. Some candidates did not read the question and gave the formula instead of the name, with some giving NH_3Br as an incorrect formula. Candidates are advised to read the questions carefully and take particular note of any words in bold print.

1 An inorganic salt **A** contains one cation and one anion. The results of two tests on salt **A** are shown in the table.

Test	Observation
Add aqueous sodium hydroxide to solid A . Warm the mixture. Test any gas evolved with damp red litmus paper.	A gas was evolved. The gas turned red litmus paper blue. $N = \frac{1}{3}$.
Add dilute nitric acid followed by aqueous silver nitrate to an aqueous solution of A .	A cream precipitate formed.

(2)

(a) Deduce the **name** of salt **A**.

NH4Br, ammonia bromate

Results Plus Examiner Comments

The formula of salt A is correct but both parts of the name are incorrect - it should be ammonium bromide. The incorrect names negate the mark for the formula.

Learn the rules for naming inorganic compounds. Ammonia is NH_3 but ammonium is NH_4 . Bromates contain bromine and oxygen e.g. BrO_3 . 1 An inorganic salt **A** contains one cation and one anion. The results of two tests on salt **A** are shown in the table.

Test	Observation
Add aqueous sodium hydroxide to solid A . Warm the mixture. Test any gas evolved with damp red litmus paper.	A gas was evolved. The gas turned red litmus paper blue.
Add dilute nitric acid followed by aqueous silver nitrate to an aqueous solution of A .	A cream precipitate formed.

(a) Deduce the **name** of salt **A**.

(2)

NH4 Br

This candidate has given the correct formula for ammonium bromide so has scored 1 mark.

Read the questions carefully. This question asks for the **name** of salt A, not the formula.

Question 1 (b)

Many candidates were familiar with adding dilute and concentrated ammonia solutions to the cream precipitate to confirm the identity of the anion. Some candidates wrote about adding one type of ammonia but this would not confirm the identity so 1 mark was awarded. Some candidates were confused between bromine and bromide ions and tests for bromine, such as displacement reactions, and therefore did not receive any credit. A few candidates thought that aqueous ammonia was dilute ammonia and excess ammonia was concentrated ammonia.

(b) Describe additional tests, with the results, that will confirm the identity of the **anion** in the cream precipitate.

(2)The anion is Br, This is orange/brown in Solution. ion would not displace a chloride 10n Solouteen an iccludide would remain grange but it would ition ould go from DIANCE a cyclopixane union would show the dustanct If the ban Celair. (Total for Question 1 = 4 marks)

This response scored 0. The candidate has confused a bromide ion with a bromine molecule.

(b) Describe additional tests, with the results, that will confirm the identity of the **anion** in the cream precipitate.

You can add concernerated ammonia Solution to the cream precipitate ad this will lead to the precipitate divergencing

This response scored 1 mark for the correct result when concentrated ammonia is added to the precipitate. The question asked for additional tests to confirm the identity of the precipitate. Silver chloride and silver bromide both dissolve in concentrated ammonia so this one test does not confirm the identity.

Give full details for any tests you describe. The test with dilute ammonia would show that the anion is not a chloride and the test with concentrated ammonia shows that the anion is not an iodide so must be a bromide. (2)

Question 2 (a)

The majority of candidates scored 2 marks for this question. Some candidates did not notice that the second species is a positive ion so wrote an incorrect number of electrons. It was surprising that a small minority of candidates did not know how to work out the correct numbers of subatomic particles from the atomic and mass numbers.

- 2 This question is about atoms, molecules and ions.
 - (a) Lithium exists as two isotopes.

Complete the table to show the numbers of subatomic particles in a ⁶Li **atom** and a ⁷Li⁺ **ion**.

			(2)
Particle	Protons	Neutrons	Electrons
⁶ Li	3	3	3
⁷ Li⁺	3	4	3

subatomic particles in a lithium atom. The number of electrons is incorrect for the lithium ion.

Read the question carefully, particularly the words in bold. The lithium ion has a positive charge so the number of electrons is one less than the number of protons.

Question 2 (b)

Many candidates identified element X as oxygen, although a significant minority confused mass numbers with atomic numbers and thought it was chlorine. Other elements, such as fluorine, nitorgen and sulfur were not uncommon. Many candidates scored 2 marks as they identified X and at least 3 of the species giving the peaks. Some candidates read the question carefully and realised that there are two different combinations of isotopes that would give 34, so they scored 3 marks.

- (b) The mass spectrum of a diatomic molecule, X₂, has peaks at the following m/z values for the X₂⁺ ion:
 - 32, 33, 34, 35, 36

Deduce the formulae of all the species responsible for **each** of the peaks in the mass spectrum of X₂, identifying element X and showing clearly the isotopes present.

 $m(z(X^{18}-X^{18}+) = 36 \qquad m(z(X^{16}-X^{16}+) = 32)$ $m(z(X^{17}-X^{17}+) = 34 \qquad m(z(X^{16}-X^{17}+) = 33)$ $m(z(X^{4}-X^{18}+)) = 35$ X & CE _ Isotopes: 10 Ce 17 Ce 18 Ce

Make sure that you understand the difference between atomic number and mass number.

(3)

(b) The mass spectrum of a diatomic molecule, X_2 , has peaks at the following m/z values for the X_2^+ ion:

32, 33, 34, 35, 36

Deduce the formulae of all the species responsible for **each** of the peaks in the mass spectrum of X_2 , identifying element X and showing clearly the isotopes present.

(3)

.....

32	[m160-10]+	
33	["0-"0]+	
34	["0-1"0]+	
3 <i>5</i>	["0-"0]+	
36	['80 - '60] +	
		· · ·

This is an example of a common answer that scored 2 marks. The question asked for all the species responsible for each of the peaks and the isotopes of 16 and 18 would also give a peak at 34.

Try to give all the combinations of isotopes in this style of question.

Question 2 (c)

The majority of candidates knew the maximum numbers of electrons in the 1s orbital and the 2p subshell. The maximum number of electrons in the third quantum shell proved to be more of a challenge as many candidates forgot about the 3d subshell.

Question 3 (a)

The majority of candidates realised that excess sodium hydroxide was needed to ensure that all of the nitric acid reacted. There were a few general answers seen that did not score a mark, for example, 'to ensure the reaction is complete'.

3 Nitric acid reacts with sodium hydroxide solution in a neutralisation reaction.

 $HNO_3(aq) + NaOH(aq) \rightarrow NaNO_3(aq) + H_2O(I)$

In an experiment to determine the enthalpy change of neutralisation, the following results were obtained.

Volume of $1.00 \text{ mol dm}^{-3} \text{ HNO}_3 = 25.0 \text{ cm}^3$

Volume of $1.05 \text{ mol dm}^{-3} \text{ NaOH} = 25.0 \text{ cm}^{-3}$

Temperature rise = 6.8 °C

(a) Give a reason why excess sodium hydroxide was used.

(1)

I mole of water had to be produced So it didn't matther how much OH - your used.

This response scored 0. The candidate knows that the definition of enthalpy change of neutralisation is for the formation of 1 mol of water but in this experiment only 0.025 mol of water is produced.

Nam

3 Nitric acid reacts with sodium hydroxide solution in a neutralisation reaction.

 $HNO_3(aq) + NaOH(aq) \rightarrow NaNO_3(aq) + H_2O(I)$

In an experiment to determine the enthalpy change of neutralisation, the following results were obtained.

Volume of 1.00 mol dm^{-3} HNO₃ = 25.0 cm³

```
Volume of 1.05 mol dm^{-3} NaOH = 25.0 cm<sup>3</sup>
```

Temperature rise = 6.8 °C

(a) Give a reason why excess sodium hydroxide was used.

(1)

```
To ensure an the nime acid had been neutransed and so
```

Naon was not a limiting reagant, expuring the reaction was

confiete.

MN02

This is an excellent answer that scored 1 mark.

It was not essential to include the phrase about sodium hydroxide not being the limiting reagent, but this is a useful concept to understand.

Question 3 (b)

Many candidates scored 3 marks for carrying out the calculation correctly to give -56.8 kJ mol⁻¹, however they did not read, or did not understand the instruction to give their answer to an appropriate number of significant figures. The temperature rise and density are given to 2 significant figures so the final answer should not have more than this. Candidates should be encouraged to think carefully about the number of significant figures to give in their final answer rather than give all answers to 3 significant figures. Other common errors included: only using 25g as the mass instead of 50g, adding together the moles of nitric acid and sodium hydroxide and omitting the negative sign for the final answer. Some candidates just calculated the heat produced in the experiment and thought that was the enthalpy change of neutralisation and a few candidates added 273 to the temperature change to try to convert it to kelvin.

(b) Calculate the enthalpy change of neutralisation for the reaction between nitric acid and sodium hydroxide solution, using the results of the experiment.

Give your answer to an appropriate number of significant figures.

 $\begin{bmatrix} Assume: density of the reaction mixture = 1.0 g cm^{-3} \\ specific heat capacity of the reaction mixture = 4.18 J g^{-1} °C^{-1} \end{bmatrix}$ (4)

This response scored 2 marks for calculating the heat produced in the reaction and the number of moles of nitric acid. The candidate has multiplied the heat produced by the number of moles, instead of dividing, and has given a positive sign for the final answer.

Remember that enthalpy changes are measured in kilojoules per mole and 'per' means divide.

The temperature increased during the experiment showing that it is an exothermic reaction so the final answer should have a negative sign. (b) Calculate the enthalpy change of neutralisation for the reaction between nitric acid and sodium hydroxide solution, using the results of the experiment.

Give your answer to an appropriate number of significant figures.

This is an example of a common answer that scored 3 marks. The final answer is given to too many significant figures as the temperature rise and density are only given to 2 significant figures.

Question 4 (e)

Many candidates could show the structure of the complex correctly. However, common errors included showing four monodentate ligands instead of two bidentate ligands, showing the hydrogens of the NH₂ groups linked to copper instead of the nitrogen atoms, showing the oxygens of the C=O groups joined to the copper instead of the single-bonded oxygens and splitting the two bidentate ligands into four monodentate ligands.

(e) Glycinate ions are bidentate ligands and can be represented by the structure

Complete the diagram below to show the structure of the [Cu(NH₂CH₂COO)₂] complex, which is square planar.

Make sure that you understand the meaning of the term 'bidentate ligand'.

(e) Glycinate ions are bidentate ligands and can be represented by the structure

Complete the diagram below to show the structure of the [Cu(NH₂CH₂COO)₂] complex, which is square planar.

Check the structures given in the question carefully and make sure you copy them accurately.

Question 4 (f)

Many candidates could explain the sequence of changes in rate of reaction and there were some very good descriptions of autocatalysis. Some candidates omitted to explain why the reaction starts slowly or stated there would be little catalyst present, instead of no catalyst. Some candidates seemed unfamiliar with this reaction and the concept of autocatalysis and they just wrote generally about rate of reaction. A few candidates thought that the reaction slows down at the end as the Mn²⁺ ions are used up, showing they had little understanding of catalysis.

(f) Manganate(VII) ions, MnO₄, react with ethanedioate ions in acid solution.

 $2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$

The reaction starts slowly, the rate of reaction then increases, before it decreases again. Explain this sequence.

(3)

Initiality reaction starts slowly, but increases in speed as mn2+ is produced. This acts as a cabalyst speeding up the rate of the reaction, as it provides an alternative pathway porthe reaction with a lower activation energy. The reaction slows down as mn²⁺ is up.

This response scored 1 mark for why the rate of reaction speeds up. There is no reason given for why the reaction starts slowly. The reaction does not slow down as the Mn^{2+} is used up as this is a product of the reaction.

Remember that reactions slow down when the reactants are used up.

(f) Manganate(VII) ions, MnO₄, react with ethanedioate ions in acid solution.

 $2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$

The reaction starts slowly, the rate of reaction then increases, before it decreases again. Explain this sequence.

(3)ocatalysos where 2Mn2+ ions lyses the reaction, ineveating va re vearton by, until SC2 Oc im α d vale decreeses. the ond product, Mn22 tre as .03 ha

This response scored 2 marks. The candidate has correctly described the increases in rate of reaction and why the rate decreases again. However, they have not commented on why the reaction starts slowly.

Read the question carefully and check to make sure that you have written about all parts of it.

Question 5 (a)

Many candidates were familiar with electrochemical cells and labelled the diagram correctly to score 3 marks. A few candidates used a cell or ammeter instead of a voltmeter, showing a lack of understanding. Some candidates used a manganese electrode instead of platinum and some did not include both ions in the solution. Candidates should practise drawing and labelling the different types of electrochemical cell.

5 An electrochemical cell is made from the electrode systems represented by these half-equations.

 $Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$

 $Mn^{3+}(aq) + e^{-} \rightleftharpoons Mn^{2+}(aq)$

The E_{cell}^{\oplus} value is measured using the apparatus shown.

Examiner Tip

5 An electrochemical cell is made from the electrode systems represented by these half-equations.

$$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$$

 $Mn^{3+}(aq) + e^{-} \rightleftharpoons Mn^{2+}(aq)$

The E_{cell}^{\oplus} value is measured using the apparatus shown.

When there is no solid metal in a half-equation, the electrode must be platinum. The solution in the beaker must include both of the ions in the halfequation.

Question 5 (b) (i)

The majority of candidates gave a correct chemical that could be used in the salt bridge. Potassium nitrate will always be suitable for all electrochemical cells as all potassium salts and all nitrates are soluble so there is no risk of a precipitate forming in one of the beakers. A general term such as 'salt' did not score a mark.

- (b) A salt bridge is used to connect the two half-cells.
 - (i) State what chemical is contained in the salt bridge.

(1)

Question 5 (b) (ii)

Many general answers were seen about wires conducting electricity that were confusing and contradictory. Some candidates thought that an unreactive metal would not allow the flow of electrons and in some answers it was not clear whether the candidate was referring to the metal wire or the salt bridge. Candidates should make sure that they understand why a salt bridge is necessary when setting up an electrochemical cell.

(ii) Give a possible reason why the salt bridge cannot be replaced by an unreactive metal wire.

Question 5 (c)

Many candidates scored the marks for (i) and (ii). Some candidates did not cancel the electrons from their overall ionic equation and others forgot to reverse the direction of the copper half-equation, even though they were told that copper is oxidised.

(c) In this cell, the copper is oxidised and $E_{cell}^{\Theta} = +1.15$ V.

$$Cu^{2+}(aq) + 2e^{2} \rightleftharpoons Cu(s) \qquad E^{\oplus} = +0.34 V$$
$$Mn^{3+}(aq) + e^{2} \rightleftharpoons Mn^{2+}(aq) \qquad \chi \ Z$$

(i) Write the overall ionic equation for the reaction taking place. State symbols are not required.

$$Cu^{2+} + 2Mn^{3+} \Longrightarrow Cu + 2Mn^{2+}$$

 (ii) Calculate the value of the standard electrode potential for the Mn³⁺(aq) I Mn²⁺(aq) half-cell.

$$1.15 - 0.34$$

$$= +0.81 V$$
(1)

(1)

Both parts of this answer scored 0.

(i) The candidate has multiplied the manganese half-equation by 2 but has not reversed the direction of the copper half-equation to show that the copper is oxidised.

(ii) The electrode potential is incorrect as the candidate has subtracted the value for the copper half-cell from the total, instead of adding them.

When you add two half-equations together, make sure that the electrons are on opposite sides of the equations so that they cancel. (c) In this cell, the copper is oxidised and $E_{cell}^{\oplus} = +1.15$ V.

 $Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$ $E^{\oplus} = +0.34 V$ $Mn^{3+}(aq) + e^{-} \rightleftharpoons Mn^{2+}(aq)$

(i) Write the overall ionic equation for the reaction taking place. State symbols are not required.

PE to CURON

 (ii) Calculate the value of the standard electrode potential for the Mn³⁺(aq) I Mn²⁺(aq) half-cell.

(1)

$$cu + Nen = 1.15.$$

$$Mn = 1.15 + 0.34$$

= 1.49 e° cell value.

(i) This candidate has written a 'cell diagram' instead of the overall ionic equation so scores 0.

(ii) This is correct and scores 1 mark.

Read the questions carefully and check your answers.

Question 6 (b) (i)

Only a minority of candidates scored a mark for giving a reason why solids are not included in the expression for the equilibrium constant. Many candidates stated that magnesium hydroxide is a solid but did not follow this through with the idea that its concentration does not change. Some candidates thought that solids do not have a concentration or that it cannot be measured.

(i) Give a reason why the magnesium hydroxide is not included in the expression for K_c .

11				۲	1.			
٦١	ھ	a	SOLU	. •	has	constant	cou certation	(density)
								1

(1)

This is a good answer that scored 1 mark.

The concentration of a solid is the equivalent of its density and this does not change during the reaction.

Question 6 (b) (ii)

Many candidates could work out the correct units for K_c , but there were many careless errors. Some candidates did not look at the expression carefully and forgot to square the units for the concentration of hydroxide ions. Candidates are advised to write down their working when deducing the units as they will be less likely to make careless errors.

(ii) Give the units for K_c .

$$[Mg^{2+}] = -7 \mod dm^{-3}$$
(1)

$$[DH^{-}]^{2} \longrightarrow (\mod dm^{-3})^{2} = \mod^{2} dm^{-6}$$
(moldm^{-3})(mol^{2} dm^{-6}) = mol^{3} dm^{-9} (moldm^{-3})(mol^{2} dm^{-6}) = mol^{3} dm^{-9}

Question 6 (b) (iii)

Many candidates calculated the correct enthalpy change of solution. The calculation can be carried out without using a Hess cycle but many candidates who tried this got an incorrect final answer. The most common errors were, not multiplying the enthalpy change of hydration of hydroxide ions by 2 and using the Hess cycle the wrong way around.

(iii) Calculate the enthalpy change of solution of magnesium hydroxide, using the following data.

Energy or enthalpy change	Value / kJ mol ⁻¹
Lattice energy of Mg(OH) ₂ (s)	-2842
$\Delta_{\text{hyd}}H$ (Mg ²⁺ (aq))	-1920
∆ _{hyd} H (OH⁻(aq))	-460

(2)

This answer scored 0 as the candidate has omitted to multiply the enthalpy change of hydration of hydroxide ions by 2 and the equation is the wrong way around.

Practise drawing energy cycles and calculating enthalpy changes.

(iii) Calculate the enthalpy change of solution of magnesium hydroxide, using the following data.

Energy or enthalpy change	Value / kJ mol ⁻¹
Lattice energy of Mg(OH) ₂ (s)	-2842
$\Delta_{hyd}H$ (Mg ²⁺ (aq))	-1920
∆ _{hyd} H (OH⁻(aq))	460

DHM=-(-2842)-2840 = +2kJml-1

This response scored 2 marks.

Try to set out calculations clearly and use a Hess cycle, where appropriate. This will help you to avoid losing marks due to careless errors.

(2)

Question 6 (b) (v)

Many candidates scored full marks for this question. Some candidates were confused between left and right and sometimes contradicted themselves by using both in the same sentence. It is acceptable to use forward and reverse directions instead. Some candidates did not realise that adding magnesium sulfate will increase the concentration of Mg²⁺ ions and that H⁺ ions from the hydrochloric acid react with the OH⁻ ions. Very few candidates were penalised for writing that the equilibrium constant changes.

(v) Predict the effect, if any, of adding each of the following to a saturated solution of magnesium hydroxide in contact with solid magnesium hydroxide. Justify your answers in terms of the effect on the equilibrium.

$$Mg(OH)_2(s) \rightleftharpoons Mg^{2+}(aq) + 2OH^{-}(aq)$$

Magnesium sulfate solution When magnisim sulphate is added the will Rujt to the left as it will the forward lever notes than have reaction Magnesium sillo Solution droxide Selid. Will also dissolve the magnessim h Dilute hydrochloric acid Hydroduloric acid will dissociate the H+ ian reaction but the reactions uill remain Stake and wont

(4)

This is an example of a response where there is a contradiction. The candidate starts by stating that the reaction will shift to the left when the magnesium sulfate is added but then states that the magnesium sulfate solution will dissolve the magnesium hydroxide. When magnesium hydroxide dissolves, the equilibrium position shifts to the right. There is nothing worthy of credit for adding hydrochloric acid so this response scored 0.

Check your answers carefully to make sure that you have not made a contradiction. Some candidates were confused between left and right in the same part of the answer. They are advised to use the terms forward and reverse directions instead. (v) Predict the effect, if any, of adding each of the following to a saturated solution of magnesium hydroxide in contact with solid magnesium hydroxide. Justify your answers in terms of the effect on the equilibrium.

 $Mg(OH)_2(s) \rightleftharpoons Mg^{2+}(aq) + 2OH^{-}(aq)$

(4) Mg SO4 Magnesium sulfate solution will shift to the side (Backward Rack constant Kle HU Dilute hydrochloric acid wall shift equilibrium Hel Adding night hand side S6 more OH constern KC KOR

This response scored 2 marks for the correct shifts in the equilibrium positions. There is no justification for either of these shifts.

Try to give reasons for your answers when you are asked to justify them.

Question 7 (a)

Many candidates could write the balanced equation for the reaction between borax and hydrochloric acid. Some candidates did not balance the equation or balanced it incorrectly. Many candidates were unable to work out that the other products were sodium chloride and water.

- 7 Boric acid, H₃BO₃, is a weak acid with antiseptic properties.
 - (a) Boric acid can be prepared by reacting borax, $Na_2B_4O_7$.10H₂O, with hydrochloric acid.

Write the equation for this reaction. State symbols are not required.

This equation scored 0. All of the reactants and products are correct but the equation is not balanced.

Question 7 (b) (i)

Many correct answers scoring 2 marks were seen for this question. Some candidates included a double bond between boron and one of the oxygen atoms and some put a lone pair on the boron atom. Candidates should realise that boron and aluminium have 3 electrons in their outer shells so can form covalent compounds where they have an empty orbital. A small minority of candidates did not use the correct symbols for the electrons and lost an easy mark.

(b) The formula of boric acid can also be written as B(OH)₃.

+ 54,0

(i) Complete the dot-and-cross diagram of a molecule of boric acid. Show the outer shell electrons only.

Use dots (•) for the hydrogen electrons, crosses (x) for the oxygen electrons and triangles (Δ) for the boron electrons.

(2)

This response scored 1 mark. All of the electrons are in the correct positions but the candidate has ignored the instruction about which symbol to use for the electrons from each of the elements.

Read the question carefully and don't make up your own symbols for electrons when you have been given specific ones to use.

Question 7 (d) (i)

Many candidates were able to calculate the pH of boric acid from the first dissociation. Some candidates did not realise that they needed to convert pK_a into K_a and some tried to use the formula for calculating the pH of a buffer solution. Some candidates calculated very low pH values and others were above 7. These did not receive a transferred error mark for the pH value as it was unrealistic for a weak acid. Candidates should be encouraged to consider the final answer for any calculation and if it is unrealistic, they should check their working to find out where they have gone wrong.

(d) In aqueous solution, boric acid dissociates into ions in three stages. The equation for the first dissociation is

$$H_3BO_3(aq) \rightleftharpoons H^+(aq) + H_2BO_3^-(aq)$$

pK_a for this dissociation is 9.24

(i) Calculate the pH of a 0.0500 mol dm^{-3} solution of boric acid from the pK_a value for the first dissociation.

$$PH = -\log_{10} [H^{+}] \qquad (3)$$

$$P(H = -\log_{10} [H^{+}]) (H_{2}BO_{3}^{-}) \qquad P(2q = (H^{+})^{2} \\ (H_{3}BO_{3}) \qquad (H_{3}BO_{3}) \qquad$$

This candidate has not converted the pK_a value into K_a . They have calculated the concentration of hydrogen ions correctly from this so scored 1 mark as a transferred error. Although they have then calculated the pH correctly, they were not awarded a mark as the value is too low for a weak acid.

Always check to see if your final answer is realistic and if it isn't, check your working to see where you have gone wrong. In this question, the examiners did not allow the pH of a weak acid to be less than 2 or greater than 7. (d) In aqueous solution, boric acid dissociates into ions in three stages. The equation for the first dissociation is

pK_a for this dissociation is 9.24

(i) Calculate the pH of a $0.0500 \text{ mol dm}^{-3}$ solution of boric acid from the pK_a value for the first dissociation.

$$K_{a} = \frac{\left(H_{teg}\right)\left[H_{2}DO_{3}i_{ag}\right]}{\left[H_{3}BO_{3}i_{ag}\right]}$$

$$k_{\alpha} = 4 10^{-9.24} = 5.754399373 \times 10^{-9}$$

$$\left[H^{+} \right]^{2} = 5.75 \times 10^{-9} \times 0.0500 = 2.877... \times 10^{-10}$$

$$\left[H^{+} \right] = \sqrt{2.877} \times 10^{-10} = 1.69... \times 10^{-5}$$

$$pH = -\log \left[H^{+} \right] = 4.77$$

$$pH = 4.77$$

(3)

The working to calculate K_a is correct but the final value is incorrect as it should be to the power of minus 10. The candidate has then used this value correctly in the next two steps so scored 2 marks.

Show all your working clearly, as in this example, then if you make a slip you will still be awarded some marks.

Question 7 (d) (ii)

The assumptions made in calculating the pH of a weak acid were generally well-known and many candidates scored 2 marks. Some candidates only wrote 1 assumption and others generally referred to 'standard conditions'. Some candidates were confused about which species had equal concentrations and $[H^+] = [H_3BO_3]$ was not uncommon.

(ii) State any assumptions you made in your calculation in (d)(i).

(2)weak equilibr α SO d ζ

This response scored 0. The candidate seems confused about weak acids and has remembered a little but has the species incorrect. Only a neutral solution has $[H^+] = [OH^-]$ and it is the concentration of boric acid that is the same at equilibrium as at the start.

Make sure that you understand the theory of weak acids and the assumptions made when calculating their pH.

Hor whom fration of [H+] = [A-] := [H]2	
The concentration is constant throughout and it in its standard state	
I malelmis each minton later pressure 298K. The silvering	14.6

(2)

This response scored 1 mark for the first point. 'The concentration is constant' was not awarded a mark as it did not state what the concentration refers to.

Check to make sure that your answer is complete and makes sense to an examiner reading it.

This is an excellent answer that scored 2 marks.

Only 2 points were needed here so the last point was not needed. It is acceptable to write answers using bullet points and equations, as in this example.

Question 8 (a) (i)

Many candidates scored full marks for this question. Some candidates just gave the type of orbital without the number of the quantum shell and others gave incorrect quantum shells. Candidates would find it helpful to write the full electronic configuration of calcium as rough working then work backwards by seeing which orbital the outermost electron is removed from.

- 8 This question is about ions and ionic compounds.
 - (a) The first three ionisation energies of calcium are shown in the table.

	First ionisation	Second ionisation	Third ionisation
lonisation energy / kJ mol ⁻¹	590	1145	4912
Orbital	S	S	٩

(i) Complete the table by identifying the specific orbital from which each electron is removed.

(2)

This response scored 1 mark. The candidate has identified the correct type of orbital but not given the numbers in front of the orbitals to show the quantum shell.

When you are asked for a specific orbital you must show the quantum shell as well as the type of orbital.

Question 8 (a) (ii)

The majority of candidates scored 1 mark for this question. Some candidates omitted state symbols and others put (aq) instead of (g). A small minority of candidates removed 3 electrons from a calcium atom and a very small number added an electron to a calcium ion.

(ii) Write the equation for the **third** ionisation energy of calcium. Include state symbols.

(1)

This response scored 0 as the candidate has omitted the state symbols.

Read the question carefully. If you are asked for state symbols, you will not receive the mark unless you include them.

Question 8 (a) (iii)

Some excellent answers were seen to this question where the candidates explained why there was a small difference between the first and second ionisation energies but a much larger difference between the second and third. Some candidates wrote about the large difference. Some candidates wrote generally about the stability of a full sub-shell of electrons and did not receive any credit as they missed the point about the third electron being removed from a new quantum shell that is closer to the nucleus. A few candidates thought that the third quantum shell was of higher energy than the fourth.

(iii) Explain why the difference between the second and third ionisation energies of calcium is much larger than the difference between the first and second ionisation energies.

(2)remove required to Daired

This answer scored 0 as the candidate has just written about the stability of paired electrons and there is no mention about the new quantum shell which is much closer to the nucleus.

When considering the relative values of ionisation energies, remember that the large jumps occur when the next electron to be removed is in a new quantum shell that is much closer to the nucleus. (iii) Explain why the difference between the second and third ionisation energies of calcium is much larger than the difference between the first and second ionisation energies.

(2) ie to the fai eave now removing larger is much A from a st 20 the lowe enucleus so the electrons feel agol En electrostatic attraction and also SI na eli electrons is 2 whe between land 100 ~ Com rac we are sti inthe so have the same st energy stell San

This is an example of an excellent answer that scored 2 marks.

Try to write detailed explanations, such as this one.

Question 8 (c)

It was pleasing to see many excellent answers scoring 6 marks but the full range of marks was seen in other answers. Some candidates gave lengthy descriptions of theoretical and experimental lattice energies but did not always relate these to the two compounds given in the question. Some candidates referred to electronegativity differences, which were not required in this question. The most common indicative points omitted from answers stated that lithium chloride is almost 100% ionic and also there was a tendency to compare the sizes of the chloride and iodide ions. Some candidates showed a lack of understanding by writing that the bond between magnesium and iodine is polarised, or that there is a bond between the two iodide ions, or they completely missed the point and wrote about experimental error. Candidates would benefit from more practice in answering this style of question as some candidates wrote very little and others wrote far too much, often repeating the same points several times. They also need to consider the use of correct scientific terminology. It was not uncommon to see a discussion about ions, then (in the same sentence) 'molecules' being included. *(c) The table shows the theoretical and experimental lattice energy values of two compounds.

Compound	Theoretical lattice energy / kJ mol ⁻¹	Experimental lattice energy / kJ mol ⁻¹
lithium chloride, LiCl	-845	-848
magnesium iodide, MgI_2	-1944	-2327

Comment on the theoretical and experimental lattice energy values, giving the reasons for any differences and similarities.

(6)
Lithium Chloride has a very similar theoretical
lattice energy and experimental lattice
energy. However, Magnesium iodide has
a big difference between the experimental
and theoretical lattice energies.
Theoretical lattice energies are calculated
from an equation - which means that the
values will not necessarily be correct. However
the experimental lattice energy is calculated
by carrying out an experiment. There are
many things to take into consideration
when carrying out an experiment, Such as
tenperature, and whether any head
it is escaping from the reaction
mixture. This may be why there is
such a big difference for MgI2.
The person carrying out the experiment may
have carried it out incorrectly.
Theoretical volumes where equations use
fixed values and do not give way for

anything else th	rat could !	re young or	٨
Neuther of these	u 100 %	oriect.	However,
in the experim	Love Was	culled	out properly
then the ex	et unestal	lattice	Reigies
will be more	accurate	than the	theoretical
lattice energy.	110000000000000000000000000000000000000	111155559999944444441111555577-444444411115555555	Bergeneren 1.11.11.11.11.11.11.11.11.11.11.11.11.1

This response scored 0 as the candidate has not revised the meaning of the term 'experimental lattice energy'. They seem to think that this is related to an experiment that a student can carry out whereas it is the value calculated using experimental values in the Born-Haber cycle.

Make sure you understand the meaning of the terms 'theoretical lattice energy' and 'experimental lattice energy'.

*(c) The table shows the theoretical and experimental lattice energy values of two compounds.

Compound	Theoretical lattice energy / kJ mol ⁻¹	Experimental lattice energy / kJ mol ⁻¹
lithium chloride, LiCl	-845	-848
magnesium iodide, MgI_2	-1944	-2327

Comment on the theoretical and experimental lattice energy values, giving the reasons for any differences and similarities.

(6) Lithium chiorido has Bund PULLOL S Ŋ 5 IN IN 11 man INY $\mathcal{N}($ **%** 10 (V

oxuorimoural jakkico ovolda m m minol \mathcal{M} DINO (A) NB BROWIC 10 P

This is quite a good answer that scored 4 marks. There are 4 correct indicative points: covalent character in magnesium iodide, the large radius of the iodide ion, magnesium ions are polarising and iodide ions are polarised. The candidate has not mentioned that lithium chloride is almost completely ionic and the charges on the magnesium and lithium ions.

*(c) The table shows the theoretical and experimental lattice energy values of two compounds.

Compound	Theoretical lattice energy / kJ mol ⁻¹	Experimental lattice energy / kJ mol ⁻¹
lithium chloride, LiCl	-845	-848
magnesium iodide, MgI ₂	-1944	-2327

Comment on the theoretical and experimental lattice energy values, giving the reasons for any differences and similarities.

(6) theoreticu For exper utte eregy LHJ Man Con Y A TA (250) VITA May 23 50 Q ever 38 volue bu Su that d Corder 5. more rasin Consaler 'US weesed Ø, May Courses thum because has greate C a + (+2 to and theefire has de 2+ Mens able the ょ aron Nu, ûn 5 . Ub Ve More Con Sma lt Menn The M2V 2† W Ca en d an wader more Grater C is one 1007. ionic corely molo w

This is an example of a clear and concise answer that scored 6 marks.

Although a lot of space is given for answers to the extended writing 6 mark questions, it is not necessary to fill up all the lines. Just include the important, relevant points to answer the question.

Question 9 (a)

The majority of candidates were familiar with the signs of ΔS_{system} and could apply their knowledge to the changes given in the question. A small number of candidates showed all the signs incorrectly so thought, for example, that there is decrease in entropy when solid carbon dioxide changes to a gas.

Question 9 (b)

The majority of candidates scored 3 marks for this question. Marks were lost when candidates omitted the minus sign when using - $\Delta H/T$ and not converting the value for either ΔS_{system} or $\Delta S_{surroundings}$ so that they were in the same unit before adding them together. A few candidates gave incorrect units and lost the last mark.

(b) Calculate the total entropy change, ΔS_{total} , for the thermal decomposition of calcium carbonate at 298 K.

$$CaCO_{3}(s) \rightarrow CaO(s) + CO_{2}(g)$$

$$[Data: \Delta_{r}H = +1/8 \text{ kJ mol}^{-1}] \qquad \Delta S_{system} = +10 \text{ JK}^{-1} \text{ mol}^{-1}]$$

$$\Delta S_{total} = \Delta S_{SStem} + \Delta S_{surrounduigs}$$
(3)

$$\frac{dssurroundings = -\Delta H}{-(+178000)} = -597.3(1dp) = -59$$

$$\Delta S \text{ total} = +160 - \frac{0-597}{-597} (-597.3)$$

= $\frac{1597.003}{-57.3} 757.3 \text{ J K}^{-1} \text{ mol}^{-1}$
= $\frac{1597.003}{-1573} \text{ kJ K}^{-1} \text{ mol}^{-1}$

This response scored 2 marks for calculating the value of $\Delta S_{surroundings}$. The value of ΔS_{total} is incorrect as the candidate has added a value in joules to one in kilojoules.

In calculations involving enthalpy changes, entropy and free energy, always check whether you are using values in joules or kilojoules and do not mix them up in the same equation.

Question 9 (c) (iii)

This is the first time that a question involving calculating an equilibrium constant from a free energy change has been set on this specification and many candidates carried it out well, scoring full marks. The common errors included omitting the minus sign from the equation and not converting ΔG into J mol⁻¹. Some candidates did not know the equation so they were unable to score any marks unless they used an equation involving ΔG , *K*, *R* and *T*. Candidates do need to learn all of the equations involving enthalpy, entropy and free energy changes. Some candidates used an incorrect value for *R*, even though this is given in the Data Booklet.

(iii) In industry, the reaction is carried out at about 700 K using a vanadium(V) oxide catalyst.

Calculate the value of the equilibrium constant, K, at 700 K.

∆G at 700 K is -60 kJ mol⁻¹

$$\begin{array}{l}
\Delta G = RTINR \\
-60 = 8.31 \times 700 \text{ In } R \\
\underline{-60} \\
= 8.31 \times 700 \\
= R \\
= 0.9897 (43F)
\end{array}$$

This response scored 1 mark. The candidate has omitted the minus sign from the equation and they have not converted the free energy change into J mol⁻¹.

(2)

Question 9 (c) (i) - (ii)

Many candidates scored full marks for the calculation in (c)(i). Common errors included not using the multiples of 2, as shown in the equation for the reaction, and writing the cycle the wrong way around.

Not as many candidates scored full marks for (c)(ii). Quite a number of candidates did not convert one of the values so they were both in kilojoules or both in joules. Some candidates did not include units for the free energy change and some gave the units of an entropy change, which is incorrect as it includes K^{-1} . A few candidates quoted an incorrect equation. Most candidates could relate the sign of the free energy change to the feasibility of the reaction but some thought that a negative value meant the reaction was not feasible. (c) Sulfur dioxide reacts with oxygen to form sulfur trioxide.

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) \qquad \Delta_r H = -288.4 \, \text{kJ} \, \text{mol}^{-1}$

The standard molar entropy values at 298K are given in the table.

	SO ₂ (g)	O ₂ (g)	SO₃(g)
S ⁺ / JK ⁻¹ mol ⁻¹	+248.1	+205.0	+95.6

(i) Calculate the entropy change of the system, ΔS_{system} , for the forward reaction. Include a sign and units in your answer.

(ii) Calculate the free energy change, ΔG , at 298 K and hence deduce whether the reaction is feasible.

$$DG = DH - TOSSystem$$

$$- 288.4 - (298)(-509!)$$

$$= +151572.4$$

$$SG 13 positive, so the reaction
$$S peololible.$$
(3)$$

(i) This is almost the correct answer. The candidate has the correct working so scores 1 mark. There is an arithmetical error as $2 \times 95.6 = 191.2$ and not 191.6 so the second mark cannot be awarded.

(ii) The equation is correct. The candidate has used an enthalpy change in kilojoules and an entropy change in joules in the same equation so the final answer is incorrect. The units are also missing. The final statement is incorrect so only 1 mark was awarded.

Always check your numerical answers.

Check that you are not using amounts in kilojoules and joules in the same equation - always convert one of them so they are in the same unit. (c) Sulfur dioxide reacts with oxygen to form sulfur trioxide.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) \qquad \Delta_r H = -288.4 \text{ kJ mol}^{-1}$$

The standard molar entropy values at 298 K are given in the table.

	SO ₂ (g)	O ₂ (g)	SO ₃ (g)
S [⊕] / JK ⁻¹ mol ⁻¹	+248.1	+205.0	+95.6

 $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$

(i) Calculate the entropy change of the system, ΔS_{system} , for the forward reaction. Include a sign and units in your answer.

(2)

$$\Delta S \text{ system} = \text{products} - \text{reactants}.$$

$$= (2 \times 95.6) - (2 \times 248.1) - 205.0$$

$$= 191.2 - 701.2$$

$$= -510 \text{ JK}^{-1} \text{mol}^{-1}$$

(ii) Calculate the free energy change, ΔG , at 298 K and hence deduce whether the reaction is feasible.

(3)

$$\Delta G = \Delta H - T \Delta S_{system}$$

$$= -288.4 - 298 \times -510$$

$$= 151619$$

$$= 151.6919$$

$$= 151.6919$$

$$= 151.6919$$

$$= 151.6919$$

$$= 151.6919$$

$$= 151.6919$$

$$= 151.6919$$

(i) This is the correct value with sign and units so scored 2 marks.

(ii) The equation is correct and the candidate has written the correct numbers down, remembering to divide the 510 by 1000 to convert it into kilojoules. However, the answer to the calculation is incorrect as the candidate has not actually divided 510 by 1000. They have also omitted the units. The final statement is correct so 2 marks were awarded.

Always check your numerical answers.

Include a sign and units for all calculations involving enthalpy changes, entropy and free energy.

(c) Sulfur dioxide reacts with oxygen to form sulfur trioxide.

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ $\Delta_r H = -288.4 \text{ kJ mol}^{-1}$

The standard molar entropy values at 298 K are given in the table.

	SO ₂ (g)	O ₂ (g)	SO₃(g)
S ^e / JK ⁻¹ mol ⁻¹	+248.1	+205.0	+95.6

(i) Calculate the entropy change of the system, ΔS_{system} , for the forward reaction. Include a sign and units in your answer.

(ii) Calculate the free energy change, ΔG , at 298 K and hence deduce whether the reaction is feasible.

.

(3)

(i) Correct for 2 marks.

(ii) The units are incorrect so only 2 marks awarded.

 ΔG is the free energy change so has the units of kJ mol⁻¹ or J mol⁻¹.

Question 9 (c) (iv)

Many candidates scored 2 marks for this question as they considered the effect of changing the temperature on the yield of product and the rate of reaction. Some candidates only considered the rate of reaction and some wrote generally about 'favouring the reverse reaction' without linking it to the yield.

(iv) The equilibrium constant has a larger value at 298 K than at 700 K. Explain why the reaction is carried out at 700 K and not at 298 K.

the rate In colases TION Luide with Thus, Blace per took. Reactland at 2/8 too Slow.

This candidate has written a good explanation about why the rate of reaction is higher at 700 K than 298 K so scored 1 mark. There is no mention of the yield, which is related to the equilibrium constant.

Remember that in industrial processes, the yield and rate of reaction are important and the temperature chosen is a compromise between these. (2)

(iv) The equilibrium constant has a larger value at 298 K than at 700 K. Explain why the reaction is carried out at 700 K and not at 298 K.

because K is smaller. The equilibrium yield is lower at highly temperature A But if the value of T were to be decreased, the rate of reaction will be too low to be economically feasible for the industries. So, although the compromise T gives a low eqm. yield, it reaches eqm. at fast enough rate to ensure profit.

This is an example of a good response that scored 2 marks.

Consider the yield and rate of reaction in industrial processes.

Question 10 (a)

Many candidates were able to add together the two half-equations to give the correct balanced equation. Some candidates included silver and some left uncancelled electrons in their equation. Some candidates did not use the half-equations given and were unsuccessful as they tried to make up their own equation. A few candidates left out the sign on the nitrate ion and some wrote copper atoms and copper ions on the wrong sides of the equation. Candidates should always check that ionic equations are balanced in terms of atoms and charges.

10 Yellow gold is used to make jewellery. It is an alloy of copper, gold and silver. The purity of gold is measured in carats. The higher the carat, the higher the percentage of gold in the alloy. Pure gold is 24 carat.

A sample of yellow gold is analysed using the steps below.

Step 1 Excess concentrated nitric acid is reacted with 1.250 g of the alloy. The gold does **not** react but the copper and silver do react. The half-equations are

 $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$

$$Ag(s) \rightarrow Ag^{+}(aq) + e^{-}$$

$$2HNO_3(aq) + e^- \rightarrow NO_3(aq) + NO_2(g) + H_2O(l)$$

- Step 2 The mixture is diluted with distilled water and the gold is filtered off.
- Step 3 Excess hydrochloric acid is added to the filtrate. It reacts with the silver ions to form a precipitate of silver chloride.

$$Ag^+(aq) + Cl^-(aq) \rightarrow AgCl(s)$$

- Step 4 The silver chloride precipitate is filtered off, washed, dried and weighed. The mass of silver chloride formed is 0.706 g
- Step 5 Excess potassium iodide is added to the remaining solution. A precipitate of copper(I) iodide and a solution of iodine forms.

$$2Cu^{2+}(aq) + 4I^{-}(aq) \rightarrow 2CuI(s) + \underline{I_2(aq)}$$

Step 6 The resulting mixture is titrated with 0.100 mol dm⁻¹ sodium thiosulfate solution.

(a) Write the equation for the reaction of copper with concentrated nitric acid, using the half-equations given in Step 1. State symbols are not required.

$$Cu^{2+}+2e^{-}+2HNO_{3}+e^{-}>cu+NO_{3}+NO_{2}+H_{2}O^{(1)}$$

 $Cu^{2+}+2HNO_{3}+3e^{-}=7Cu+NO_{3}+NO_{2}+H_{2}O^{(1)}$

This response scored 0. The candidate has reversed the direction of the copper half-equation so there are electrons on the left side of both halfequations. The equation is also not balanced.

Practise working out overall equations from halfequations. Remember the electrons must always cancel.

Question 10 (b)

Many candidates were familiar with iodine/thiosulfate titrations and scored 2 marks for starch and the colour change of blue-black to colourless. It was surprising that a significant minority of candidates suggested an acid-base indicator for this titration. Some candidates thought that either iodine or sodium thiosulfate was the indicator and some did not know the colour change.

(b) State the indicator used and its colour change at the end-point in the titration in Step **6**.

This is a common response that scored 0.

Learn the indicator and its colour change at the end-point for iodine/thiosulfate titrations.

Question 10 (c)

It was pleasing to see a large number of completely correct answers scoring 6 marks. However, there are some candidates who would benefit from more practice at redox titration calculations as they struggled to get further than working out the numbers of moles of silver chloride and sodium thiosulfate, although some thought that 0.706g was the mass of silver. Some candidates were unable to use the equations given to work out the mole ratio of copper ions to thiosulfate ions as 1:1.

(c) The table shows the percentage by mass of gold in four different carats of yellow gold.

Carat	Percentage by mass of gold
9	37.5
10	41.7
14	58.3
18	75.0

Determine, using the experimental data, the carat of the sample of yellow gold that was analysed.

HNO₃ + alloy

$$1,250g$$

AgCl(s)
 0.7069
 $1_2 + 2520_3^{2-}$
 $39.4cm^3$
() moles of $2x + 2Ag^{+} \rightarrow Cu^{2+} + 2Ag$
() moles of $AgCl_2$.
 $12 + 2520_3^{2-}$
 $12 + 2520_3^{2-}$
 $12 + 2520_3^{2-}$
 $12 + 2520_3^{2-}$
 $12 + 2520_3^{2-}$
 $12 + 2520_3^{2-}$
 $12 + 2520_3^{2-}$
 $12 + 2520_3^{2-}$
 $12 + 2520_3^{2-}$
 $12 + 2520_3^{2-}$
 $12 + 2520_3^{2-}$
 $12 + 2520_3^{2-}$
 $12 + 2520_3^{2-}$
 $12 + 2520_3^{2-}$
 $12 + 2520_3^{2-}$
 $12 + 2520_3^{2-}$
 $12 + 2520_3^{2-}$
 $12 + 2520_3^{2-}$
 $12 + 2Ag^{+} \rightarrow Cu^{2+} + 2Ag$
 $12 + 2Ag^{+} \rightarrow Cu^{2+} + 2Ag^{+} \rightarrow Cu^{2+}$

This response scored 1 mark for calculating the number of moles of Cu^{2+} ions.

The candidate has attempted to calculate the number of moles of silver chloride but has used an incorrect formula - AgCl₂ instead of AgCl.

Always check that you are using the correct formula. The formula of silver chloride was given in an equation earlier in the question. (c) The table shows the percentage by mass of gold in four different carats of yellow gold.

Carat	Percentage by mass of gold			
9	37.5			
10	41.7			
14	58.3			
18	75.0			

Determine, using the experimental data, the carat of the sample of yellow gold that was analysed.

1) mols Agu = man	1	> man	n goid =	1.250 ~ ((6) 531-0-230
= 0.706 143.4			·	z 0.469	l
= 4.92×10-3 mch	0	:. º/	man	gold = .	0.469 -100
> mols Agt = 4.92 × 10-3 moly	1			-	37.49
(3) > mois Ag (s) = 4.92 -10-3 mois					≈ 37.5%
(4) = mass Ag = mois > m,	1	-> 9	Coccet	a da	
= 4.92 × 10 -3 × 107.9		01	ca, w	9010	•
= 0.3312239	1				
(5) mols thiosulfate = C > V 1000	P				
= 0.1 ×39.7	I				
- 3.94 ×10-3 mols					
= 1.97 × 10-3 moto	i				
() = mols (u2+ = 1.97 + 10-3 +2					
3.94×10-3 mols	i				
() => mois Cu = 3.97 = 103 moly					
(1) > mass Cu=3.94×10-3=63.5					
= 0.250199	(

This is an example of an excellent answer that scored 6 marks.

Try to set out your calculations clearly and explain all of your working, as in this example.

Paper Summary

On the basis of their performance on this paper, candidates are offered the following advice:

- read all the information in the question carefully and use it to help you to answer the question
- learn the meanings of as many of the key scientific words in each topic as possible
- practise answering the extended writing questions so you understand how to improve your performance by giving more relevant details, or in some cases, by writing more concisely and not repeating points
- learn all of the equations needed for carrying out enthalpy change, entropy change and free energy change calculations and remember to give your answer to an appropriate number of significant figures and include a sign and units, where appropriate
- explain each stage in your working for multi-stage calculations.

Grade Boundaries

Grade boundaries for this, and all other papers, can be found on the website on this link:

http://www.edexcel.com/iwantto/Pages/grade-boundaries.aspx

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R 0RL.