Pearson Edexcel Level 3 Advanced Level GCE in Chemistry (9CH0) ## **Data Booklet** Issue 2 Summer 2017 Edexcel qualifications are awarded by Pearson, the UK's largest awarding body offering academic and vocational qualifications that are globally recognised and benchmarked. For further information, please visit our qualification websites at www.qualifications.pearson.com/en/home.html Alternatively, you can get in touch with us using the details on our contact us page at www.qualifications.pearson.com/en/support/contact-us.html #### **About Pearson** Pearson is the world's leading learning company, with 40 000 employees in more than 70 countries working to help people of all ages to make measurable progress in their lives through learning. We put the learner at the centre of everything we do, because wherever learning flourishes, so do people. Find out more about how we can help you and your learners at: www.pearson.com/uk This Data Booklet is available on our Chemistry 2015 webpage. Centres will be sent copies of the Data Booklet for the first examination series. Centres can make additional fresh copies by printing the Data Booklet from our website. Candidates must use an unmarked copy of the Data Booklet in examinations. #### **Acknowledgement of source** The data used in the Data Booklet is derived from the *Nuffield Advanced Science*, *Revised Book of Data* (ISBN 058235448X), Nuffield Foundation. ## **Contents** | Introduction | | |------------------------------------|---| | Physical constants | 1 | | Infrared spectroscopy | 2 | | Nuclear magnetic resonance | 3 | | Pauling electronegativities | 4 | | Standard electrode potentials | 5 | | The Periodic Table of the Elements | 6 | ## Introduction This Data Booklet is for use with the Pearson Edexcel Level 3 Advanced Level GCE in Chemistry (9CHO) assessments for papers 1, 2 and 3. Students will be provided with a clean copy of this Data Booklet for these assessments, which should be kept under the same conditions as the assessment papers. Students may have a copy of this Data Booklet for their personal use in lessons and for homework, to allow them to become familiar with how to use it. ### **Physical constants** Avogadro constant (L) 6.02 x 10^{23} mol⁻¹ Elementary charge (e) $1.60 \times 10^{-19} \text{ C}$ Gas constant (R) 8.31 J mol⁻¹ K⁻¹ Molar volume of a gas at room temperature and pressure (r.t.p.): $24 \text{ dm}^3 \text{ mol}^{-1}$ Ionic product of water (K_W) 1.00 x 10⁻¹⁴ mol² dm⁻⁶ $1 \text{ dm}^3 = 1000 \text{ cm}^3 = 0.001 \text{ m}^3$ ### **Infrared spectroscopy** ### Correlation of infrared absorption wavenumbers with molecular structure | Group | Wavenumber range/cm ⁻¹ | |--|--| | C-H stretching vibrations Alkane Alkene Alkyne Arene Aldehyde | 2962-2853
3095-3010
3300
3030
2900-2820 and 2775-2700 | | C-H bending vibrations | | | Alkane Arene 5 adjacent hydrogen atoms 4 adjacent hydrogen atoms 3 adjacent hydrogen atoms 2 adjacent hydrogen atoms 1 isolated hydrogen atom | 1485-1365
750 and 700
750
780
830
880 | | N-H stretching vibrations | | | Amine
Amide | 3500-3300
3500-3140 | | O-H stretching vibrations | | | Alcohols and phenols
Carboxylic acids | 3750-3200
3300-2500 | | C=C stretching vibrations | | | Isolated alkene
Arene | 1669-1645
1600, 1580, 1500, 1450 | | C=O stretching vibrations | | | Aldehydes, saturated alkyl Ketones, alkyl Ketones, aryl Carboxylic acids, alkyl Carboxylic acids, aryl Carboxylic acid, anhydrides Acyl halides, chlorides Acyl halides, bromides Esters, saturated Amides | 1740-1720
1720-1700
1700-1680
1725-1700
1700-1680
1850-1800 and 1790-1740
1795
1810
1750-1735
1700-1630 | | Triple bond stretching vibrations | | | C≡C | 2260-2215
2260-2100 | # ¹H nuclear magnetic resonance chemical shifts relative to tetramethylsilane (TMS) # ¹³C nuclear magnetic resonance chemical shifts relative to tetramethylsilane (TMS) ## **Pauling electronegativities** ### Pauling electronegativity index | | | | | | | | Н | | | | | | | | | | Не | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----| | | | | | | | | 2.1 | | | | | | | | | | | | Li | Be | | | | | | | | | | | В | С | Ν | 0 | F | Ne | | 1.0 | 1.5 | | | | | | | | | | | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | | | Na | Mg | | | | | | | | | | | Αl | Si | Р | S | Cl | Ar | | 0.9 | 1.2 | | | | | | | | | | | 1.5 | 1.9 | 2.1 | 2.5 | 3.0 | | | Κ | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | | 0.8 | 1.0 | 1.3 | 1.5 | 1.6 | 1.6 | 1.5 | 1.8 | 1.8 | 1.8 | 1.9 | 1.6 | 1.6 | 2.0 | 2.0 | 2.4 | 2.8 | | | Rb | Sr | Υ | Zr | Nb | Мо | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | | 0.8 | 1.0 | 1.2 | 1.3 | 1.6 | 2.1 | 1.9 | 2.2 | 2.2 | 2.2 | 1.9 | 1.6 | 1.7 | 1.9 | 1.9 | 2.1 | 2.5 | | | Cs | Ba | La | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Τl | Pb | Bi | Po | At | Rn | | 0.7 | 0.9 | 1.1 | 1.3 | 1.5 | 2.3 | 1.9 | 2.2 | 2.2 | 2.2 | 2.5 | 2.0 | 1.6 | 1.8 | 1.9 | 2.0 | 2.2 | | ### **Indicators** | | p <i>K</i> in
(at 298 k | acid
() | pH range | alkaline | |--|--------------------------------|--------------------------------|--|-----------------------------------| | Thymol blue (acScreened methodMethyl orangeBromophenol blance | yl orange 3.7
3.7
ue 4.0 | red
purple
red
yellow | 1.2-2.8
3.2-4.2
3.2-4.4
2.8-4.6 | yellow
green
yellow
blue | | 5 Bromocresol gro | een 4.7 | yellow | 3.8-5.4 | blue | | 6 Methyl red
7 Litmus | 5.1 | red
red | 4.2-6.3
5.0-8.0 | yellow
blue | | 8 Bromothymol b | | yellow | 6.0-7.6 | blue | | 9 Phenol red10 Phenolphthaleir ethanol) | 7.9
(in 9.3 | yellow
colourless | 6.8-8.4
8.2-10.0 | red
red* | ^{*} or pink ## **Standard electrode potentials** **E** Standard electrode potential of aqueous system at 298 K, that is, standard emf of electrochemical cell in the hydrogen half-cell forms the left-hand side electrode system. | | Right-hand electrode system | E [⊕] /V | |----|--|-------------------| | 1 | Na⁺ + e⁻ ⇌ Na | -2.71 | | 2 | $Mg^{2+} + 2e^{-} \rightleftharpoons Mg$ | -2.37 | | 3 | $AI^{3+} + 3e^{-} \rightleftharpoons AI$ | -1.66 | | 4 | $V^{2+} + 2e^- \rightleftharpoons V$ | -1.18 | | 5 | $Zn^{2+} + 2e^- \rightleftharpoons Zn$ | -0.76 | | 6 | $Cr^{3+} + 3e^- \rightleftharpoons Cr$ | -0.74 | | 7 | $Fe^{2+} + 2e^{-} \rightleftharpoons Fe$ | -0.44 | | 8 | $Cr^{3+} + e^- \rightleftharpoons Cr^{2+}$ | -0.41 | | 9 | $V^{3+} + e^- \rightleftharpoons V^{2+}$ | -0.26 | | 10 | $Ni^{2+} + 2e^- \rightleftharpoons Ni$ | -0.25 | | 11 | $H^+ + e^- \rightleftharpoons \frac{1}{2}H_2$ | 0.00 | | 12 | $S_4O_6^{2^-} + 2e^- \rightleftharpoons 2S_2O_3^{2^-}$ | +0.09 | | 13 | $Cu^{2+} + e^- \rightleftharpoons Cu^+$ | +0.15 | | 14 | $Cu^{2+} + 2e^{-} \rightleftharpoons Cu$ | +0.34 | | 15 | $VO^{2+} + 2H^+ + e^- \rightleftharpoons V^{3+} + H_2O$ | +0.34 | | 16 | $O_2 + 2H_2O + 4e^- \rightleftharpoons 4OH^-$ | +0.40 | | 17 | $S_2O_3^{2-} + 6H^+ + 4e^- \rightleftharpoons 2S + 3H_2O$ | +0.47 | | 18 | Cu ⁺ + e ⁻ ⇌ Cu | +0.52 | | 19 | $I_2 + 2e^- \rightleftharpoons 2I^-$ | +0.54 | | 20 | $O_2 + 2H^+ + 2e^- \rightleftharpoons H_2O_2$ | +0.68 | | 21 | $Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+}$ | +0.77 | | 22 | $Ag^+ + e^- \rightleftharpoons Ag$ | +0.80 | | 23 | $NO_3^- + 2H^+ + e^- \rightleftharpoons NO_2 + H_2O$ | +0.80 | | 24 | $CIO^- + H_2O + 2e^- \rightleftharpoons CI^- + 2OH^-$ | +0.89 | | 25 | $VO_2^+ + 2H^+ + e^- \rightleftharpoons VO^{2+} + H_2O$ | +1.00 | | 26 | $Br_2 + 2e^- \rightleftharpoons 2Br^-$ | +1.09 | | 27 | $O_2 + 4H^+ + 4e^- \rightleftharpoons 2H_2O$ | +1.23 | | 28 | $Cr_2O_7^{2^-} + 14H^+ + 6e^- \rightleftharpoons 2Cr^{3+} + 7H_2O$ | +1.33 | | 29 | $Cl_2 + 2e^- \rightleftharpoons 2Cl^-$ | +1.36 | | 30 | $MnO_4^- + 8H^+ + 5e^- \rightleftharpoons Mn^{2+} + 4H_2O$ | +1.51 | | 31 | $H_2O_2 + 2H^+ + 2e^- \rightleftharpoons 2H_2O$ | +1.77 | | | 0 (8) | 4.0
He helium | 20.2 | Ne | neon
10 | 39.9 | Ar
argon | 18 | 83.8 | Ā | krypton
3 6 | 131.3 | Xe | xenon
54 | [222] | R | radon
86 | | ted | | | | | | | | | | | |--------------------------------|-------|----------------------------------|----------------------|------------|----------------|------------|------------------------|--------------------------------|------|----|-------------------------|-------|--------------|------------------|-------|-----|-----------------|-------|--|----------------------|-------|-----------------------|-------------------|-------|---------------|---|-------|----|--------------------| | | 7 | (77) | 19.0 | ш | fluorine
9 | 35.5 | Cl
chlorine | 17 | 79.9 | В | bromine
35 | 126.9 | Ι | iodine
53 | [210] | Αt | astatine
85 | | een repor | | 175 | 3 | lutetium
71 | [257] | ֖֖֓֞֡֡֡֡֡֡֡֡֡ | lawrencium
103 | | | | | | 9 | (16) | 16.0 | 0 | oxygen
8 | 32.1 | S ulfur | 16 | 79.0 | Se | selenium
34 | 127.6 | <u>Б</u> | tellurium
52 | [506] | 2 | polonium
84 | | 116 have b | 16 have b
ticated | 173 | Υp | ytterbium
70 | [254] | 2 | nobelium
102 | | | | | | 2 | (15) | 14.0 | z | nitrogen
7 | 31.0 | P
phosphorus | . 15 | 74.9 | As | arsenic
33 | 121.8 | Sb | antimony
51 | 209.0 | Bi | bismuth
83 | | Elements with atomic numbers 112-116 have been reported
but not fully authenticated | | 169 | E | thulium
69 | [526] | Þ₩ | mendelevium
101 | | | | | | 4 | (14) | 12.0 | U | carbon
6 | 28.1 | Si
silicon | 14 | 72.6 | ge | germanium
32 | 118.7 | Sn | 20 Ej | 207.2 | Ъ | lead
82 | | atomic nu | but not 1 | 167 | ᆸ | erbium
68 | [253] | Fm | fermium
100 | | | | | | ĸ | (13) | 10.8 | В | boron
5 | 27.0 | Al
aluminium | 13 | 69.7 | Ga | gallium
31 | 114.8 | <u>l</u> | indium
49 | 204.4 | F | thallium
81 | | ents with | | 165 | 운 | holmium
67 | [254] | Es | einsteinium
99 | | | | | ents | | | | | | | | (12) | 65.4 | Zu | zinc
30 | 112.4 | <u>გ</u> | cadmium
48 | 200.6 | Ę | mercury
80 | | | | 163 | ò | dysprosium
66 | [251] | ָל | californium einsteinium
98 99 | | | | | Elem | | | | | | | | (11) | 63.5 | J | copper
29 | 107.9 | Ag | silver
47 | 197.0 | Αn | gold
79 | [272] | Rg | roentgenium
111 | 159 | TP | terbium
65 | [245] | % | berkelium
97 | | | | | le of | | | | | | | | (10) | 28.7 | Ë | nickel
28 | 106.4 | Pd | palladium
46 | 195.1 | F | platinum
78 | l | Ds | damstadtium
110 | 157 | | gadolinium
64 | | | cunium
96 | | | | | c Tab | | | | | | | | (6) | 58.9 | ප | cobalt
27 | 102.9 | 몺 | rhodium
45 | 192.2 | ŀ | iridium
77 | [368] | Mt | meitnerium
109 | 152 | Eu | europium
63 | [243] | Am | americium
95 | | | | | riodi | | 1.0
H
hydrogen
1 | | | | | | (8) | 55.8 | Fe | iron
26 | 101.1 | Ru | ruthenium
44 | 190.2 | os | osmium
76 | [277] | H. | hassium
108 | 150 | Sm | samarium
62 | [242] | Pu | plutonium
94 | | | | | The Periodic Table of Elements | | | | | | | | (2) | 54.9 | ۸ | hromium manganese 24 25 | [86] | բ | technetium
43 | 186.2 | Re | rhenium
75 | | Bh | bohrium
107 | [147] | | promethium
61 | [237] | N | n neptunium plutonium americium
93 94 95 | | | | | F | | | mass | lod | number | | | (9) | 52.0 | ъ | chromium
24 | 95.9 | Wo | molybdenum
42 | 183.8 | ≯ | tungsten
74 | [597] | Sg | dubnium seaborgium t | 144 | PX | neodymium
60 | I~ | | uranium
92 | | | | | | | Key | relative atomic mass | ive atomic | ive atomic | ive atomic | atomic symbol | name
atomic (proton) number | | | (2) | 50.9 | > | vanadium
23 | 92.9 | g | niobium
41 | 180.9 | Ā | tantalum
73 | [797] | a | dubnium
105 | 141 | P | praseodymium n
59 | [231] | Pa | protactinium
91 | | | | | relat | ato | atomic | | | (4) | 47.9 | F | titanium
22 | 91.2 | Zr | zirconium
40 | 178.5 | Ŧ | hafnium
72 | _ | Æ | rutherfordium
104 | 140 | g | cerium
58 | 232 | <u>۽</u> | thorium
90 | | | | | | | | | | | | | (3) | 45.0 | Sc | scandium
21 | 88.9 | > | yttrium
39 | 138.9 | La* | lanthanum
57 | [227] | Ac* | actinium
89 | | es | | • | | _ | | | | | | 7 | (2) | 9.0 | Be | beryllium
4 | 24.3 | Mg
magnesium | 12 | 40.1 | g | | 9.78 | Sr | strontium
38 | 137.3 | Ba | barium
56 | [326] | Ra | radium
88 | | 'Lanthanide series | * Actinide series | | | | | | | | | - | E | 6.9 | ij | lithium
3 | 23.0 | Na
sodium | 7 | 39.1 | × | potassium
19 | 85.5 | & | rubidium
37 | 132.9 | ర | caesium
55 | [223] | F. | trancium
87 | | * Lantha
* Actinid | | | | | | | |